STORMWATER POLLUTION PREVENTION PLAN AND CALCULATIONS REPORT

for

Hackett Boulevard Apartments

Prepared by

Engineering Ventures, PC

<u>Vermont</u> 208 Flynn Avenue, Suite 2A Burlington, Vermont 05401 <u>New York</u> 414 Union Street Schenectady, NY 12305 <u>New Hampshire</u> 85 Mechanic Street, Suite E2-3 Lebanon, NH 03766

Applicant

Ronald Stein 204 Winding Brook Road New Rochelle, NY 10804

February 12, 2021

EV Job# 20483

Hackett Boulevard Apartments Stormwater Pollution Prevention Plan Table of Contents

Part 1: Narrative

- I. Project Description
- II. Existing Conditions
- III. Receiving Water
- IV. Potential Impacts to Natural Resources
- V. Site Soils Information
- VI. Proposed Conditions
- VII. Stormwater Management Methodology
- VIII. Stormwater Objectives
- IX. Post-Construction Stormwater Management Treatment Practices
- X. Storm Sewer Collection and Conveyance Design
- XI. Erosion and Sediment Control Design
- XII. Maintenance and Inspections

Part 2: E&S Checklist and Construction Sequence

Part 3: Site Location and Natural Resource Maps

- I. Hackett Boulevard Apartments Location Map
- II. Aerial Map
- III. NYS Environmental Resource Mapper

Part 4: Soils Mapping and Information

- I. Soil Map
- II. Soil Descriptions

Part 5: HydroCAD Report (1YR, 2YR, 10YR, 25-YR, 50-YR and 100 YR)

- I. Pre-Development
- II. Post-Development

Part 6: WQv Calculations, Pre-Treatment Calculations, and Individual SMP Calculations

- I. Contech Stormwater Calcs
- II. Subsurface Detention Basin Calcs
- III. Rain Garden Calcs

Part 7: Stormwater Conveyance Calculations (100-YR)

Part 8: Maintenance & Inspection

- I. Contractor Certification Form
- II. Maintenance and Inspection Logs
- III. Contech CDS Guide: Operation, Design, Performance, and Maintenance

Part 9: Plans

Construction Plans / Erosion & Sediment Control Plans

- C0.0: Cover Sheet
- C0.1: Site Legend and Notes
- C1.0: Existing Conditions and Demolition Plan
- C2.0: Site Layout Plan
- C2.1: Grading and Utility Plan
- C2.2: Erosion and Sediment Control Plan
- C3.0: Site and Water Details
- C3.1: Stormwater Details (1 of 2) and Sanitary Details
- C3.2: Stormwater Details (2 of 2)
- C3.3: Erosion and Sediment Control Details (1 of 2)
- C3.4: Erosion and Sediment Control Details (2 of 2)
- C3.5: City of Albany Site Details

Drainage Maps

- HYD1: Pre-Development Drainage Area Map (attached)
- HYD2: Post-Development Drainage Area Map (attached)
- HYD3A: Long-term Operation and Maintenance Plan (1 of 2) (attached)
- HYD3B: Long-term Operation and Maintenance Plan (1 of 2) (attached)

<u>Part 1:</u>

Narrative

208 Flynn Avenue, Suite 2A, Burlington, VT 05401 • Tel: 802-863-6225 • Fax: 802-863-6306 85 Mechanic Street, Suite E2-3, Lebanon, NH 03766 • Tel: 603-442-9333 • Fax: 603-664-4244 414 Union Street, Schenectady, NY 12305 • Tel: 518-630-9614

I. Project Description

The Applicant, Ron Stein is proposing a 39-unit, 4-story apartment building, with a building footprint of 15,750 SF+/- at 42 Besch Avenue, Albany NY 12208. Parking will be provided on the ground level of the proposed building. The total lot area is 0.67 acres and is located on Tax Parcels 76.46-4-29 & 30. The project will also include the construction of new sidewalks and access drives, stormwater management, utilities (water, sanitary sewer, electric), landscaping and other associated infrastructure.

II. Existing Conditions of Site and Surrounding Areas

The site is bordered by Hackett Boulevard to the north, an existing Marriot Hotel and Parking area to the east, and residential properties to the south and west. The site is mostly wooded and steeply sloped, sloping from south to north towards Hackett Boulevard at an average slope 25%+/-. A shallow surface stormwater detention area is located on the north portion of the property, along Hackett Boulevard. This stormwater area collects/attenuates runoff form the adjacent Marriot property and will be relocated as part of this project. An 84" diameter concrete combined sanitary/storm sewer crosses the northeastern corner of the property. A 16" waterline is located on the northern side of Hackett Boulevard.

III. Receiving Water

The project drains to an existing 84" diameter combined sanitary/storm sewer that crosses the northeastern corner of the property, as described above. The combined sewer flows to the east and ultimately to a wastewater treatment plant. Runoff from the wastewater treatment plant ultimately flows to the Hudson River, located to the east. The project is located within the City of Albany Combined Sewer Overlay (CSO).

IV. Potential Impacts to Natural Resources

There are no wetlands, floodplains, threatened or endangered species, or other natural resources located in the project area according to the New York State Environmental Resource Mapper.

V. Site Soils Information

The soils on the site were mapped using the NRCS Web Soil Survey. The following soils are located on the site:

• Uh– Udorthents, clayey-Urban land complex. These soils are typically consistent with previously developed land. The Hydrological Soil Group was determined by examining the surrounding, non-urban land soils, which are comprised mostly of Hudson silt loam, which are Hydrologic Soil Group C/D. Due to these soils being located in an area that is known to have flooding issues on the site, the saturated soil condition with a Hydrological Soil Group D was used.

Ut – Urban Land-Udorthents complex, 0-8 percent slopes. These soils are typically consistent with previously developed land. The Hydrologic Soil Group was determined by examining the surrounding, non-urban land soils, which are comprised mostly of Hudson silt loam, which are Hydrologic Soil Group C/D. Since these soils are located primarily towards the rear of the site, on steep slopes, it was assumed that these soils are not saturated constantly. Therefore a Hydrological Soil Group C was used.

VI. Proposed Conditions

As stated in the project description, a 4-story (15,750 SF+/- footprint) is proposed, along with access drives and sidewalk in the front of the building along Hackett Boulevard. Due to the development on the project site, the existing detention basin along Hackett Boulevard, described in Section II above, will need to be demolished. This detention basin, which stores a volume of runoff from the adjacent Marriot site to the north (TMPs# 76.46-5-22 and 76.46-5-1), will be replaced with subsurface detention at a 1:1 ratio of storage volume and relocated to the Marriott site.

The runoff generated from the new, on-site impervious area (consisting of the entire roof) will be collected with roof drains and conveyed to catch basins within the parking garage area. These catch basins, which will collect runoff from snowmelt or vehicles tracking runoff into the parking garage, combined with the roof runoff will be conveyed to a Contech CDS hydrodynamic separator unit, which will provide treatment for the 90% storm event. Once treated in the Contech CDS unit, runoff will be conveyed to a proposed 48,000-gallon concrete stormwater tank located under the proposed parking area, which will provide attenuation for larger storm events in accordance with the NYSDEC and City of Albany requirements. An outlet structure in this tank will reduce the flows to pre-development rates prior to discharging to the existing 84" combined sanitary/storm sewer. The storm system will utilize an existing 8" PVC storm pipe outlet from the removed detention basin as the outlet, in order to limit the new connections into the existing combined sewer.

In order to meet requirements of the State Pollutant Discharge Elimination System (SPDES) Discharge Permit for the City of Albany Combined Sewer Overflow, specifically Best Management Practices (BMPs) for Combined Sewer Overlays item 9, referring to the infiltration and inflow (I/I) requirement, the project will provide a rain garden/bio-retention area in front of the building to help infiltrate a portion of the roof runoff.

Section VII of this report discusses the stormwater management methodology in more detail.

VII. Stormwater Management Methodology

The stormwater design was prepared in accordance with the New York State Stormwater Management Manual and the City of Albany Regulations. The following objectives were established in the development of the Stormwater Management Plan for the proposed project:

1. <u>Reduction of Peak Runoff Rates</u>

Reduce the total post-development peak discharges to pre-development discharges for the 1-YR, 10-YR, and 100-YR storms in accordance with the New York State Stormwater Management Manual. In accordance with the City of Albany regulations, the 100-year post-development flow must be reduced to a 10-year pre-development flow when discharging to

combined sewers. This 100-year post-development to 10-year pre-development reduction will be met for the on-site flows.

2. <u>Relocation of Existing Detention Basin Volume</u>

Relocate storage from the existing detention basin (which is to be removed) to subsurface detention basins on adjacent Marriott property at a 1:1 ratio of storage volume.

3. <u>Water Quality Volume and Compliance with Requirements of the NYS Stormwater Manual</u> Provide water quality (WQv) Channel Protection (CPv), Overbank Flood Control (Qp), and Extreme Flood Control (Qf) in accordance with the New York State Stormwater Management Manual.

4. Infiltration/Inflow (I/I) Requirements for Combined Sewer Discharges

Per City of Albany and NYSDEC regulations, infiltration and inflow (I/I) reduction for proposed developments that discharge to the combined sewer shall be at least equal to the estimated increased peak hourly dry-weather flow or four (4) times the average daily dry-weather flow, whichever is greater.

 Sewer: (based on 1994 plumbing code fixtures): 39 bedrooms x 90 GPD = 3,510 GPD I/I requirement = 4 x 3,510 Gal = 14,040 Gal = 1877 CF

For purposes of analyzing the development from this project, one (1) point of interest was established. The point of interest (shown on the drainage map as P.O.I.#1) is located at the point where the proposed development enters the combined sewer. Table 1 describes the total areas and land cover conditions for P.O.I.#1 in both the pre-development and post-development conditions. All land cover conditions have been modeled as woods in the pre-development condition.

	PRE-DEVELOPMENT	POST-DEVELOPMENT
ON-SITE RUNOFF (Outs	side Hackett Boulevard I	ROW)*
Woods, C-soils	0.546 Ac.	0.283 Ac.
Woods, D-soils	0.291 Ac.	0 Ac.
Lawn, C-soils	0 Ac.	0.076 Ac.
Lawn, D-soils	0 Ac.	0.096 Ac.
Impervious Surfaces	0 Ac.	0.382 Ac.
TOTAL ON-SITE AREA	0.837 Ac.	0.837 Ac
* Onsite Area includes	0.167 Ac. from upslope,	off-site areas
OFF-SITE RUNOFF (Wit	hin the Hackett Bouleva	rd ROW)
Woods, C-soils	0.202 Ac.	0 Ac.
Lawn, C-soils	0 Ac.	0.139 Ac.
Impervious Surfaces	0 Ac.	0.063 Ac.
TOTAL AREA	0.202 Ac.	0.202 Ac.

Table 1: Summary of Areas

PRE-DEVELOPMENT HYDROLOGY

Using the established Point of Interest, a drainage area was delineated. Time of concentrations and runoff curve numbers were determined the drainage area and input into HydroCAD. Pre-Development conditions were analyzed for the 1-, 2-, 10-, and 100-year frequency storm events using SCS TR-20 Method as provided by *HydroCAD version 10.10*. All program input and output can be found in Part 5 of this report.

POST-DEVELOPMENT HYDROLOGY

The runoff curve numbers and time of concentration values were adjusted for the postdevelopment conditions. A minimum time of concentration value of 5 minutes was utilized for the catchment areas containing impervious areas in the post-development calculations. Again, by using the SCS TR-20 method as provided by *HydroCAD version 10.10*, the peak runoff rates were determined for the 1-, 2-, 10-, and 100-year frequency storm events. All program input and output can be found in Part 5 of this report.

See Section VIII for how the stated objectives were satisfied.

VIII. <u>Stormwater Objectives</u>

The following section outlines how the stated stormwater objectives, described in Section VII above, were satisfied for the project:

Objective 1: Reduction of Peak Runoff Rates

To mitigate the increase in runoff from pre-development to post-development condition, one (1) subsurface, 48,000-gallon concrete tank has been designed to attenuate and reduce the flows to pre-development levels prior to discharging from the site. This practice is described further in Section IX of this report.

• ON-SITE Peak Runoff Rates:

Table 2 summarizes the results of the stormwater management analysis for pre-development and post-development runoff rate control.

	iary of I car			w3
	1-YR	2-YR	10-YR	100-YR
PRE-DEVELOPMENT (Node 1L)	0.53 cfs	0.84 cfs	2.31 cfs	5.56 cfs
POST-DEVELOPMENT (Node 2L)	0.22 cfs	0.29 cfs	0.89 cfs	2.25 cfs

Table 2: P.O.I.#1 Summary of Peak Flows for On-Site Flows

As can be seen by Table 2, the 100-year post-development peak flow rate is reduced to less than the 10-year pre-development peak flow rate for the on-site flows, satisfying the City of Albany requirements for sites discharging to combined sewers.

• TOTAL (OFF-SITE AND ON-SITE) Peak Runoff Rates:

Table 3 summarizes the results of the stormwater management analysis for pre-development and post-development runoff rates for the entire project, including the areas within the Hackett Boulevard ROW.

				-	
	1-YR	2-YR	10-YR	50-YR	100-YR
PRE-DEVELOPMENT (Node 3L)	0.72 cfs	1.11 cfs	2.98 cfs	4.89 cfs	7.03 cfs
POST-DEVELOPMENT (Node 4L)	0.60 cfs	0.78 cfs	1.79 cfs	2.70 cfs	3.61 cfs
% reduction	16.7%	29.7%	39.9%	44.8%	48.6%

Table 3: P.O.I.#1 Summary of Total Peak Flows

As can be seen by Table 3, the post-development peak flow rates are reduced to less than the pre-development peak flow rates for all design storms. While site restriction in the Hackett Boulevard ROW limit the opportunity to reduce peak rates further, the 50 year post-development storm is reduced to the 10-year pre-development storm, and the 100-year storm is reduced by almost 50% in the post-development condition.

Objective 2: Relocation of Existing Detention Basin Volume

The storage volume of the existing detention basin, estimated between the elevations of 164 and 166, is 3,915 CF. While there is a catch basin located at the bottom that functions as an outlet, in the larger storm events the basin is known to fill to the berm elevation of 166. Therefore, the entire volume below the berm is used as a conservative approach.

Due to the grades in the adjacent parking area, the storage volume replacement will be accomplished using two (2) subsurface detention basins, each consisting of a 47'L x 20.5'W x 3.5'D stone bed with 4 rows of arch chambers and 6 chambers to a row, totaling 24 arch chambers per basin. The basins will be wrapped in an impermeable liner. The storage volume for these basins were calculated assuming StormTECH SC-740 chambers. Basin #1 will be designed with an outlet structure that will allow the runoff to overflow in the larger storm events.

Each basin has a storage volume of 2,010 CF, totaling 4,020 CF of total volume, which exceeds the storage volume provided in the existing detention basin.

Objective 3: Water Quality Volume and Compliance with Requirements of the NYS Stormwater Manual

All new impervious from the proposed building is directed to a proposed Contech CDS 2015-4 hydrodynamic separator unit.

Water Quality Volume (Entire Roof Area)

P = 1.20"; Area = 0.362 Ac; I = 100; Rv = 0.95 WQv = (P*Rv*A)/12 = 0.03439 Ac-FT = 1,498 CF WQv = 1,498 CF

Water Quality Peak Flow Calculation

P = 1.20" Q = WQv/Drainage Area = 1,498 CF / 15,750 SF = 0.095 FT = 1.14 in. Modified CN = 100 (Per New York State Stormwater Manual **WQv Peak Flow = 0.64 CFS** With a treatment capacity of 0.7 CFS, the Contech CDS 2015-4-C hydrodynamic separator unit has the capacity to provide treatment for the entire water quality volume storm, thus satisfying the WQv requirement.

• Channel Protection Volume (CPv)

The Cpv required is the post-development 1-year storm volume draining to the proposed Infiltration Basin. A minimum 1" diameter orifice in the proposed stormwater tank outlet structure has been designed to reduce the peak flow rate for 100% of the 1-YR storm event, with a center of mass detention time of 12 hrs, which satisfies the CPv requirement.

• Total Overbank Flood Control Criteria (Qp)

The post-development peak runoff rate during the 10-year storm event has been reduced to less than pre-development levels. The flows are as follows:

Pre-Development = 2.98 CFS Post-Development = 1.79 CFS (39.9% reduction)

• Total Extreme Flood Control Criteria (Qf)

The post-development peak runoff rate during the 100-year storm event has been reduced to less than pre-development levels. The flows are as follows:

Pre-Development = 7.03 CFS Post-Development = 3.61 CFS (48.8% reduction)

Objective 4: Infiltration/Inflow (I/I) Requirements for Combined Sewer Discharges

A rain garden has been designed to allow a portion of the roof to infiltrate in order to meet the I/I requirement for combined sewer discharges. The rain garden will consist of 24" of amended soil and 6" of ponding. An assumed infiltration rate of 2"/hr was used in the calculations. The contractor will verify infiltration rates during construction.

For this project, $\frac{1}{2}$ of the roof was directed to the rain garden. During the 50-year storm event, 2,003 CF of runoff volume is exfiltrated and discarded through the proposed rain garden, which exceeds the required I/I volume of 1,877 CF. See Part 6 for the rain garden routing.

IX. Post-Construction Stormwater Management Treatment Practices

Subsurface Attenuation Tank:

A 48,000 Gallon subsurface stormwater attenuation tank has been designed to attenuate and reduce the post-development flows for the larger storm events to pre-development levels prior to discharging into the combined sanitary/storm sewer. Runoff will be conveyed to the tank as described in Sections VI. The bottom of the proposed attenuation tank is at elevation 161.5 An outlet structure consisting of a 1" diameter orifice, set at the bottom of the tank, has been designed to meet the flow rate requirements for CPv. A 4" diameter orifice and 8" diameter overflow have been designed to mitigate peak flows for the larger storm events. There is no pretreatment required for this practice, as the runoff will already have been treated in the proposed Contech

hydrodynamic separator prior to entering the tank. In addition, the catch basins located in the parking garage area will have sumps in the bottoms to allow any larger particles tracked in by vehicles to settle before entering the tank.

Contech CDS2015-4-C Hydrodynamic Separator:

A Contech CDS2015-4-C hydrodynamic separator will be utilized to meet the water quality component, as described in the previous section of this report. The CDS2015-4-C has a treatment capacity of 0.7 CFS and a maximum internal bypass capacity of 10.0 CFS, per Contech specifications. The peak flow, during the WQv storm event, based on a modified curve number of 100, is 0.64 CFs, and the 100-year flow through the unit is 3.73 CFS, which are below the treatment and internal bypass capacities.

Soil Restoration (per Section 5.1.6 of the NYS Stormwater Manual):

In accordance with Section 5.1.6 of the NYS Stormwater Manual, Soil Restoration techniques shall be applied to all proposed lawn areas. Soil Restoration shall consist of the following procedure:

- 1) Apply three (3) inches of compost of subsoil. Compost shall be aged, from plant derived materials, free of viable weed seeds, have no visible free water or dust produced when handling, pass through a 1/2" screen, and have a pH suitable to grow desired plants.
- 2) Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor mounted disc, or tiller, mixing, and circulating air and compost into subsoils. In area of proposed infiltration basin, install orange construction fencing around basin bottom to keep construction equipment from crossing the proposed basin bottom.
- 3) Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site.
- 4) Apply topsoil to a depth of 6 inches.
- 5) Vegetate as required by approved plan.

X. Storm Sewer Collection and Conveyance Design

Stormwater catch basins and pipes within the development were designed to safely convey the 100-year storm event without surcharging any of the catch basins. Storm sewers have been designed using the *Hydraflow Storm Sewer Extension for AutoCAD Civil 3D* software. All calculations and output from the storm sewer design can be found in Part 7 of this report.

XI. Erosion and Sediment Control Design

Typical Erosion and Sediment Control facilities, details, and specifications are shown on the plan. These measures are intended to minimize the impact of the project on surrounding and downstream properties, both during and after construction. All erosion and sediment control measures will be installed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Erosion and sediment control measures provided on the site include:

Temporary Measures

<u>Silt Fence</u>

Silt Fence has been designed downslope of any disturbed areas, since all disturbed areas are small and will not contribute large amount of runoff. The silt fence provided shall meet the

specifications in the NYS E&S Manual. Silt fence shall remain in place until all upslope areas have achieved permanent stabilization.

• <u>Stabilized Construction Access</u>

A Stabilized Construction Access will be provided to prevent the tracking of sediment onto Hackett Boulevard. The stabilized construction access shall remain in place until the site has been stabilized and there is no potential for sediment to be tracked off-site from construction vehicles.

Erosion Control Blanket

Erosion Control Blanket (North American Green S75BN or approved equivalent) shall be provided on all disturbed 3:1 slopes or greater, and erosion control blanket (North American Green S150BN or approved equivalent) shall be provided in all channels.

- <u>Storm Drain Inlet Protection</u> Inlet Protection will be provided on all new catch basins.
- Dust Control

Dust shall be controlled through the application of water, as required to prevent migration beyond the project limits. Control of dust remains an ongoing responsibility of the contractor until the site is fully stabilized.

Vegetative Measures

Protecting Vegetation

Tree protection fencing or other type of temporary fencing shall be installed along any tree lines adjacent to work areas or around individual trees to remain to ensure that there is no unnecessary damage or disturbance to these trees. In addition, the area of the proposed subsurface infiltration basin shall be protected to prevent construction traffic from compacting the infiltration area.

• <u>Topsoiling/Seeding/Mulching</u>

All proposed grass/lawn areas will be covered with 6" of topsoil to achieve final grade. These areas will be seeded and mulched within 48 hours of final grading per the details and specs shown on the plan.

XII. Maintenance and Inspections

The operator shall comply with all aspects of the following regarding maintenance and inspections:

- 1) New York State Department of Environmental Conservation SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-20-001);
- 2) New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016;
- 3) New York State Stormwater Management Design Manual, dated January 2015 (or most current);
- 4) City of Albany local codes and laws.

Requirements for the Qualified Inspector and Qualified Professional

The operator is responsible for designating a "qualified inspector" to perform the inspections for the site during construction. Per the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-15-002), a qualified inspector means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or other Department endorsed individuals.

A qualified inspector can also be someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that the person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosional Engineer or Registered Landscape and practices of erosion of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer the direct supervision of the licensed Professional Engineer the direct supervision of the Individual working under the direct supervision of the Individual Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

A qualified inspector can also be a person that meets the "qualified professional" qualifications in addition to the qualified inspector qualifications. Per the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-20-001), a qualified professional means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Inspections

At a minimum, the qualified inspector shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved final stabilization, and all points of discharge. The qualified inspector shall prepare an inspection report subsequent to each and every inspection, including all aspects listed within Part IV.C.4 of the General Permit. Within one (1) business day of the completion of an inspection, the qualified inspector shall notify the owner or operator and appropriate contractor or subcontractor of any corrective actions that need to be taken. The contractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

During Construction, all inspections shall be conducted as follows:

- During construction and when soil disturbance is on-going, the qualified inspector shall conduct a site inspection at least every seven (7) calendar days AND as soon as reasonably possible during or after weather resulting in runoff from the site.
- When soil disturbances have been temporarily suspended (e.g. winter shutdown, etc.), and temporary measures have been applied to all disturbed areas, the qualified inspector shall conduct a site inspection at least once every thirty (30) calendar days. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office in writing prior to reducing the frequency of inspections.
- When soil disturbances have been stopped with partial project completion, the qualified inspector can stop conducting inspections if all areas disturbed as part of the project shutdown date have achieved final stabilization and all post construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office in writing prior to reducing the frequency of inspections. If soil disturbances are not resumed within two (2) years from the date of the shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed activities have achieved final stabilization, and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformation with the SWPPP by signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form.

After construction, the post-construction stormwater management features shall be inspected on an annual basis to ensure that they are functioning properly. See the Long-Term Operation and Maintenance Plan.

Maintenance

<u>Temporary Erosion and Sediment Control Practices</u>

Maintenance procedures and guidelines for specific temporary erosion and sediment control features are detailed in the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. The following detail maintenance procedures for temporary measures at a minimum:

Silt Fence:

Damaged silt fence shall be repaired as needed. Maintenance shall be performed and sediment shall be removed when sediment is visibly built up behind the silt fence (typically to a height of about 1/2 the fence height).

Inlet Protection:

Remove sediment as needed and maintain stone around inlet to ensure that runoff passes over the stone into the catch basin and not past the structure. After rain storms, remove sediment to provide for accurate storage volume for subsequent rain storms. Fabric over catch basins shall be maintained to ensure that runoff is not bypassing the catch basin.

Stabilized Construction Access:

The stabilized construction access shall be maintained in a condition which will prevent tracking of sediment onto public right-of-way. When washing is required, it shall be done on the area stabilized with aggregate, which drains to an approved sediment trapping device. All sediment shall be prevented from entering storm drains, ditches, or watercourses.

- <u>Permanent Erosion and Sediment Control Practices and Post Construction Stormwater Features</u> Maintenance procedures and guidelines for specific permanent erosion and sediment control features are detailed in the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016 and the New York State Stormwater Management Design Manual, dated January 2015 (or most current). The following detail maintenance procedures for permanent measures at a minimum:
 - Contech CDS Unit:

The Contech unit shall be maintained as recommended by the manufacturer's specifications, which are included in Part 8 of this Report.

Stormwater Attenuation Tank:

The proposed stormwater tank shall be inspected annually and shall be cleaned out if any sediment has accumulated in the tank.

Catch Basins

Catch basins shall be inspected annually and shall be cleaned out when sediment has accumulated to within 6 inches of the invert out.

<u>Part 2:</u>

E&S Checklist and Construction Sequence

APPENDIX E EROSION AND SEDIMENT CONTROL PLAN REVIEW CHECKLIST

Hackett Boulevard Apartments

Project Name (EV# 20483)

Site Location _ City of Albany, Albany County, NY

Applicant's Name & Address

Ron Stein 204 Winding Brook Road New Rochelle, NY 10804

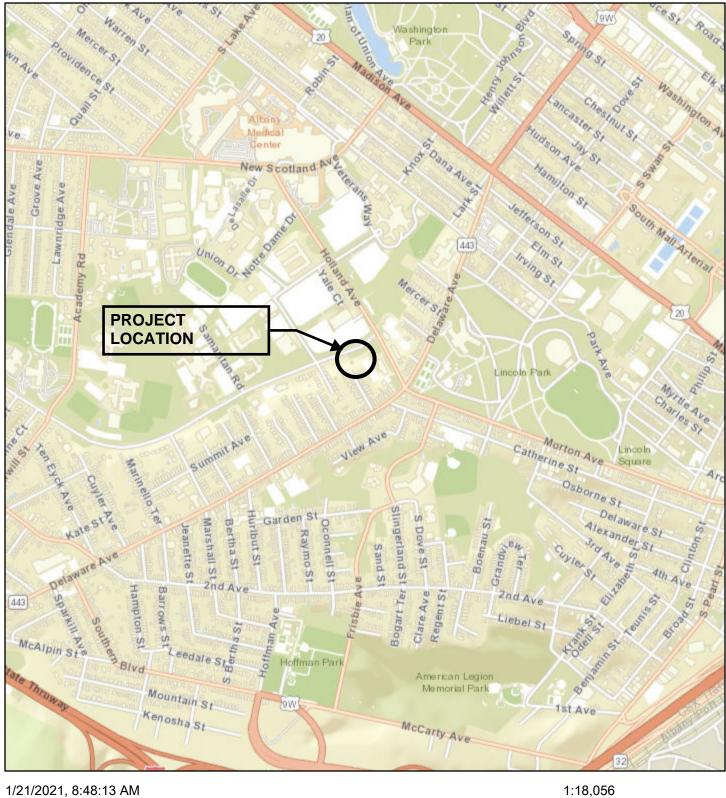
General

A narrative statement shall be provided that describes the proposed project nature and purpose; the existing site conditions including topography, vegetation and drainage; adjacent and off-site areas affected by the project; description of the soils on the site and key properties; notations of critical areas such as steep slopes, channels or wetlands; the overall phasing, sequencing and stabilization plan; total disturbed area and, areas not to be disturbed, and soil restoration plan.

I. <u>Construction Drawings</u>

Are the following items shown on the construction drawings:	Yes	<u>No</u>	
1. Vicinity Map with scale and north arrow	_X_		C0.0
2. Legend, scales, N arrow on plan view	<u> </u>		ALL PLANS
3. Existing and proposed topography shown with contours labeled with spots elevations in critical areas	_X_		C1.0, C2.0, C2.1
4. Scope of the plan noted in the Title Block	_X		ALL PLANS
5. Limits of clearing and grading shown, and methods of spoil disposal	<u> </u>		C1.0
6. Existing vegetation delineated	<u> </u>		C1.0
7. Soil boundaries shown on the existing and proposed plan views	_X		C2.2
8. Existing drainage patterns, 100 year floodplain and sub-areas shown, runoff outfall locations identified	_ <u>x</u>		DRAINAGE MAPS
9. Existing and proposed development facilities/ improvements shown	_ <u>X</u>		C1.0, C2.0
10. Location of Erosion and Sediment control practices as phased with construction, with dimensions and material specifications	<u>_X</u>		C2.2
11. Phasing plan with 5 acre threshold limits shown		N/A	
12. Stockpile locations, staging areas, access points, and concrete trunk washout locations clearly defined	_X		C2.2
13. Street profiles, utility locations, property boundaries and, easement delineations shown	N/A		
14. Soil Restoration Plan detailed on the site plan	<u> </u>		C2.2

New York State Standards and Specifications For Erosion and Sediment Control


II.	Construction Notes & Details	Yes	<u>No</u>	
	1. Specific sequence of operation given for each phase	<u> </u>		C2.2
	2. Inspection and maintenance schedule shown for the specific practices	<u> </u>		NARRATIVE
	3. Design details show all dimensions and installation details necessary for construction	<u>X</u>		C3.0-C3.5
	4. Implementation schedule for E&S practices is provided with removal criteria stated	<u> </u>		C2.2
	5. Site pollution and construction waste management plan incorporated in the notes	<u> </u>		C2.2
	6. Site Inspections during construction are noted on the drawings and are in accordance with the General Permit for Stormwater Discharges from Construction Activities	<u>_X</u>		C2.2
III	Erosion & Sediment Control Practices			
A.	General	Yes	<u>No</u>	
	1. Practice meets purpose and design criteria	<u>X</u>		C2.2 - Narrative
	2. Standard details and construction notes are provided	<u> </u>		C2.2, C3.3 and C3.4
	3. Special timing of practice noted if applicable	<u> </u>		C2.2 (Sequencing)
	4. Provisions for traffic crossings shown on the drawings where necessary		N/A	
B.	Practices Controlling Runoff	Yes	<u>No</u>	
	1. Positive drainage is maintained with contributing drainage area shown	_ <u>x</u>		C2.2
	2. Flow grades properly stabilized	<u> </u>		C2.2
	3. Adequate outlet or discharge condition stabilized	<u> </u>		C2.2
	4. Necessary dimensions, gradations, calculations, and materials shown	<u> </u>		C2.2, Narative
C.	Practices Stabilizing Soil	Yes	<u>No</u>	
	1. Seeding rates and areas properly shown on the drawings	<u>X</u>		C3.3
	2. Mulch materials and rates specified on the drawings	<u> </u>		C3.3
	3. Sequencing and timing provisions limit soil exposure to 7 to14 days as appropriate	<u> </u>		C2.2

C.	Practices Stabilizing Soil (cont'd)	Yes	<u>No</u>
	4. Rolled Erosion Control Products (RECP's) used are specified to location and appropriate weight/tie down	<u></u>	C2.2
	5. All soil seed bed preparation and amendments are specified on the drawings or in the specifications	X	C2.2
	6. The seeding dates are specified to cover the entire year for both temporary and permanent seedings	<u> </u>	C2.2
	7. Maximum created slopes are no steeper than2 foot horizontal to 1 foot verticalwith Cut and Fill slopes shown	<u> </u>	C2.2
D.	Practices Controlling Sediment	Yes	No
	1. Sediment traps/basins are sized in accordance with criteria		<u>N/A</u>
	2. The contributing drainage area is shown on the grading plan	<u>X</u>	C2.2
	3. All scaled dimensions and volumes are shown on the plan	_X	C2.2
	4. Maintenance requirements and clean out elevations established for all sediment control practices (50% capacity)	<u>×</u>	C2.2
	5. All access points of the project are shown to be stabilized	X	C2.2
	6. Storm drain inlets adequately protected	<u>X</u>	C2.2
	7. Buffer filter strips are appropriately sited and installed	N/A	
	7. Silt fences are shown on the contour lines with no more than one quarter acre per 100 foot drainage to it	<u>X</u>	C2.2
	8. Temporary sediment traps are not being used at locations of future stormwater infiltration facilities	X	C2.2
	9. Dewatering devices for traps and basins are adequately designed with details shown on the plans		N/A
	10. Geotextile filter bags are properly sited, sized, and have their maintenance requirements detailed on the drawings		N/A
	11. Turbidity curtains are properly located with installation, anchoring, and maintenance details shown on the plans		N/A

<u>Part 3:</u>

Site Location and Natural Resource Maps

Hackett Boulevard Apartments Location Map

Municipal Boundaries

Esri, HERE, Garmin, INCREMENT P, NGA, USGS

Environmental Resource Mapper

The coordinates of the point you clicked on are:

UTM 18	Easting:	600496.4653000907	Northing:	4722290.807754592
Longitude/Latitude	Longitude:	-73.77405442007937	Latitude:	42.64652596107203

The approximate address of the point you clicked on is: 47 Besch Ave, Albany, New York, 12209

County: Albany City: Albany USGS Quad: ALBANY

DEC Region

Region 4:

(Capital Region/Northern Catskills) Albany, Columbia, Delaware, Greene, Montgomery, Otsego, Rensselaer, Schenectady and Schoharie counties. For more information visit <u>http://www.dec.ny.gov/about/611.html</u>.

National Wetands Inventory

Attribute: undefined Type: undefined Acres: undefined

For more information about the National Wetands Inventory wetlands visit http://www.fws.gov/wetlands/

2/10/2021

Environmental Resource Mapper Information

If your project or action is within or near an area with a rare animal, a permit may be required if the species is listed as endangered or threatened and the department determines the action may be harmful to the species or its habitat.

If your project or action is within or near an area with rare plants and/or significant natural communities, the environmental impacts may need to be addressed.

The presence of a unique geological feature or landform near a project, unto itself, does not trigger a requirement for a NYS DEC permit. Readers are advised, however, that there is the chance that a unique feature may also show in another data layer (ie. a wetland) and thus be subject to permit jurisdiction.

Please refer to the "Need a Permit?" tab for permit information or other authorizations regarding these natural resources.

Disclaimer: If you are considering a project or action in, or near, a wetland or a stream, a NYS DEC permit may be required. The Environmental Resources Mapper does not show all natural resources which are regulated by NYS DEC, and for which permits from NYS DEC are required. For example, Regulated Tidal Wetlands, and Wild, Scenic, and Recreational Rivers, are currently not included on the maps.

<u>Part 4:</u>

Soils Mapping and Information

Soil Map—Albany County, New York

Γ

The soil surveys that comprise your AOI were mapped at 1:15,800.	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the datail of manning and accuracy of soil	line placement. The maps do not show the small areas of	contrasting soils that could have been shown at a more detailed	0000.	Please rely on the bar scale on each map sheet for map measurements.	Source of Map: Natural Resources Conservation Service	Web Soil Survey URL: Conrrdinata Svstem Wehrcator (FPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator	projection, which preserves direction and shape but distorts	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as	or the version date(s) instead befow. Soil Surrivor Aroo: Alboort Caunty Now York		Soil map units are labeled (as space allows) for map scales	1:50,000 or larger.	Date(s) aerial images were photographed: Jul 1, 2014—Sep 22, 2017	The orthonhoto or other base man on which the soil lines were	compiled and digitized probably differs from the background	imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			
Spoil Area Stony Spot	Very Stony Spot	Wet Spot	Other	Special Line Features	atures	Streams and Canals	tation Rails	Interstate Highwavs	US Routes	Major Roads	Local Roads	pur	Aerial Photography											
W <			\triangleleft	Ĭ,	Water Features	{	Transportation Rai	E \	1	8	5	Background	4											
Area of Interest (AOI) Area of Interest (AOI) Area of Interest (AOI)	onominal technical	soil Map Unit Forgoris Soil Map Unit Lines	Soil Map Unit Points	Doint Footman	special Point Features	Borrow Pit	Clay Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot	
Area of In	Soils		•		opecial) ×	\diamond	×	8 <mark>0</mark>	٩	\prec	-\$	6<	0	0	>	÷	0 0 0 0	Ŵ	\diamond	A	Q	

USDA Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Uh	Udorthents, clayey-Urban land complex	9.3	40.6%
Ut	Urban land-Udorthents complex, 0 to 8 percent slopes	13.6	59.4%
Totals for Area of Interest		22.9	100.0%

Albany County, New York

Uh—Udorthents, clayey-Urban land complex

Map Unit Setting

National map unit symbol: 9pj2 Elevation: 20 to 310 feet Mean annual precipitation: 36 to 41 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 100 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents, clayey, and similar soils: 40 percent Urban land: 30 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents, Clayey

Typical profile

H1 - 0 to 18 inches: silty clay *H2 - 18 to 72 inches:* stratified silt loam to clay

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.2 inches)

Description of Urban Land

Typical profile

H1 - 0 to 6 inches: variable

Minor Components

Scio

Percent of map unit: 10 percent Hydric soil rating: No

Hudson

Percent of map unit: 10 percent Hydric soil rating: No

Rhinebeck

Percent of map unit: 7 percent

Hydric soil rating: No

Madalin

Percent of map unit: 3 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Albany County, New York Survey Area Data: Version 18, Jun 11, 2020

Albany County, New York

Ut—Urban land-Udorthents complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9pjb Elevation: 0 to 460 feet Mean annual precipitation: 36 to 41 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 100 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 50 percent Udorthents and similar soils: 30 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Typical profile

H1 - 0 to 6 inches: variable

Description of Udorthents

Typical profile

H1 - 0 to 4 inches: channery loam *H2 - 4 to 70 inches:* channery loam

Properties and qualities

Slope: 0 to 8 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 5.95 in/hr) Depth to water table: About 36 to 72 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Available water capacity: Low (about 5.4 inches)

Minor Components

Unnamed soils, moderately well

Percent of map unit: 10 percent

USDA

Unnamed soils, poorly Percent of map unit: 10 percent

Data Source Information

Soil Survey Area: Albany County, New York Survey Area Data: Version 18, Jun 11, 2020

<u>Part 5:</u>

HydroCAD Report (1-YR, 2-YR, 10-YR, 25-YR, 50-YR and 100-YR)

Extreme Precipitation Tables

Northeast Regional Climate Center

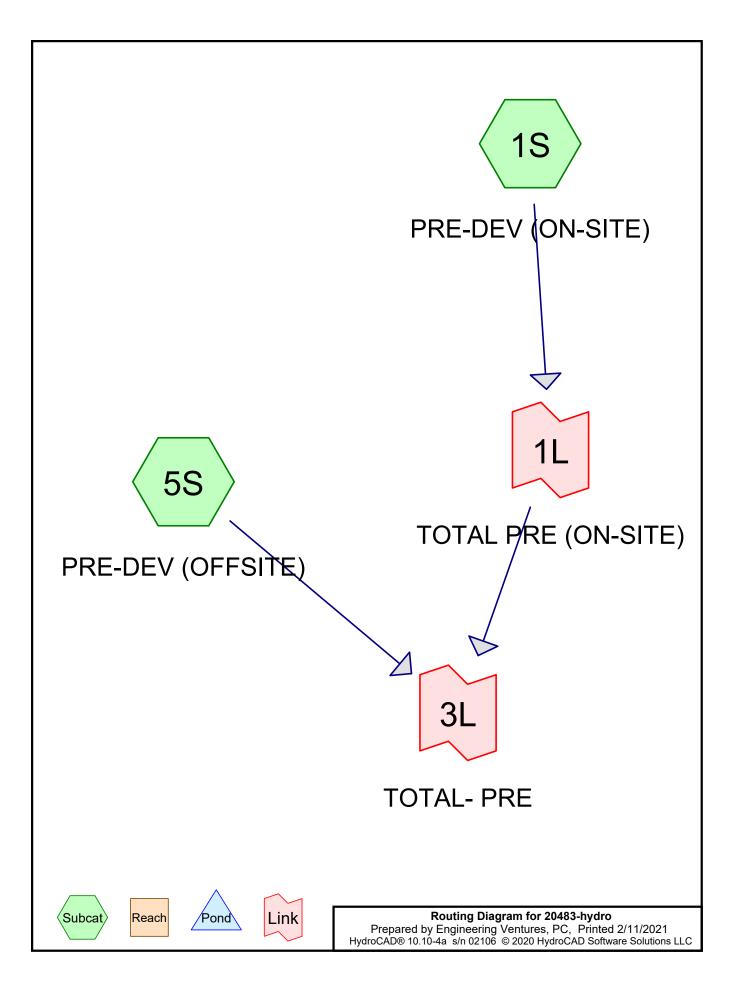
Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New York
Location	
Longitude	73.774 degrees West
Latitude	42.646 degrees North
Elevation	0 feet
Date/Time	Wed, 10 Feb 2021 19:42:31 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.71	0.89	1.10	1yr	0.77	0.95	1.25	1.53	1.85	2.24	2.51	1yr	1.98	2.41	2.83	3.39	3.89	1yr
2yr	0.34	0.53	0.66	0.87	1.09	1.35	2yr	0.94	1.21	1.54	1.85	2.21	2.62	2.95	2yr	2.32	2.84	3.30	3.90	4.45	2yr
5yr	0.41	0.63	0.79	1.06	1.36	1.69	5yr	1.17	1.47	1.93	2.32	2.75	3.24	3.66	5yr	2.87	3.52	4.08	4.71	5.36	5yr
10yr	0.45	0.71	0.90	1.23	1.60	2.00	10yr	1.38	1.71	2.29	2.75	3.25	3.81	4.31	10yr	3.37	4.15	4.78	5.43	6.17	10yr
25yr	0.54	0.85	1.09	1.50	1.99	2.50	25yr	1.71	2.09	2.86	3.44	4.05	4.71	5.37	25yr	4.17	5.16	5.92	6.57	7.43	25yr
50yr	0.60	0.96	1.24	1.74	2.34	2.98	50yr	2.02	2.43	3.41	4.09	4.79	5.53	6.33	50yr	4.90	6.09	6.96	7.59	8.57	50yr
100yr	0.69	1.11	1.43	2.03	2.77	3.52	100yr	2.39	2.82	4.04	4.84	5.66	6.51	7.47	100yr	5.76	7.19	8.19	8.77	9.88	100yr
200yr	0.78	1.27	1.65	2.37	3.27	4.19	200yr	2.82	3.29	4.80	5.74	6.69	7.66	8.83	200yr	6.78	8.49	9.64	10.14	11.39	200yr
500yr	0.93	1.53	2.00	2.91	4.08	5.25	500yr	3.52	4.03	6.02	7.19	8.35	9.51	11.02	500yr	8.42	10.60	11.96	12.29	13.78	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.20	0.30	0.37	0.50	0.61	0.84	1yr	0.53	0.82	0.92	1.17	1.42	1.84	2.14	1yr	1.63	2.06	2.34	3.12	3.67	1yr
2yr	0.33	0.51	0.63	0.86	1.05	1.19	2yr	0.91	1.16	1.32	1.70	2.19	2.55	2.87	2yr	2.26	2.76	3.21	3.80	4.33	2yr
5yr	0.37	0.57	0.70	0.96	1.23	1.37	5yr	1.06	1.34	1.53	1.97	2.50	3.03	3.43	5yr	2.68	3.30	3.79	4.41	5.00	5yr
10yr	0.39	0.60	0.75	1.05	1.35	1.54	10yr	1.17	1.50	1.70	2.17	2.82	3.42	3.92	10yr	3.03	3.77	4.29	4.95	5.56	10yr
25yr	0.43	0.65	0.81	1.16	1.53	1.78	25yr	1.32	1.74	1.95	2.50	3.22	3.98	4.69	25yr	3.52	4.51	5.06	5.76	6.37	25yr
50yr	0.46	0.69	0.86	1.24	1.67	2.00	50yr	1.44	1.96	2.17	2.77	3.54	4.47	5.38	50yr	3.95	5.18	5.71	6.46	7.06	50yr
100yr	0.49	0.74	0.93	1.34	1.84	2.26	100yr	1.59	2.21	2.42	3.09	3.88	5.01	6.18	100yr	4.43	5.94	6.47	7.26	7.84	100yr
200yr	0.53	0.80	1.01	1.46	2.04	2.55	200yr	1.76	2.50	2.71	3.46	4.25	5.60	7.12	200yr	4.95	6.84	7.33	8.16	8.69	200yr
500yr	0.60	0.89	1.14	1.66	2.36	3.02	500yr	2.04	2.95	3.14	4.02	4.78	6.50	8.59	500yr	5.75	8.26	8.65	9.53	9.98	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.32	0.50	0.61	0.82	1.00	1.05	1yr	0.87	1.02	1.29	1.63	2.06	2.41	2.68	1yr	2.14	2.58	2.99	3.56	4.11	1yr
2yr	0.37	0.57	0.70	0.95	1.18	1.29	2yr	1.01	1.26	1.46	1.86	2.32	2.73	3.04	2yr	2.42	2.92	3.40	4.03	4.60	2yr
5yr	0.44	0.68	0.84	1.16	1.47	1.65	5yr	1.27	1.62	1.90	2.37	2.99	3.43	3.91	5yr	3.03	3.76	4.36	5.03	5.73	5yr
10yr	0.52	0.80	0.99	1.38	1.79	2.00	10yr	1.54	1.95	2.32	2.87	3.46	4.14	4.76	10yr	3.67	4.57	5.28	6.01	6.79	10yr
25yr	0.65	0.98	1.22	1.74	2.29	2.55	25yr	1.98	2.50	3.04	3.67	4.34	5.31	6.13	25yr	4.70	5.90	6.80	7.56	8.51	25yr
50yr	0.76	1.15	1.44	2.06	2.78	3.08	50yr	2.40	3.01	3.71	4.45	5.15	6.41	7.45	50yr	5.67	7.16	8.23	8.99	10.11	50yr
100yr	0.90	1.36	1.70	2.45	3.36	3.70	100yr	2.90	3.62	4.54	5.37	6.11	7.76	9.04	100yr	6.87	8.69	9.99	10.71	12.01	100yr
200yr	1.06	1.60	2.02	2.93	4.08	4.46	200yr	3.52	4.36	5.54	6.49	7.29	9.41	10.98	200yr	8.33	10.56	12.12	12.76	14.27	200yr
500yr	1.33	1.98	2.55	3.70	5.26	5.68	500yr	4.54	5.55	7.25	8.35	9.25	12.18	14.20	500yr	10.78	13.65	15.69	16.09	17.98	500yr

Pre-Development

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.546	70	Woods, Good, HSG C (1S)
0.493	77	Woods, Good, HSG D (1S, 5S)
1.039	73	TOTAL AREA

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Printed 2/11/2021

Soil Listing (selected nodes)

Page 3

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.546	HSG C	1S
0.493	HSG D	1S, 5S
0.000	Other	
1.039		TOTAL AREA

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Type II 24-hr 1-YR Rainfall=2.23" Prepared by Engineering Ventures, PC Printed 2/11/2021 HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 4	,
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method	
Subcatchment1S: PRE-DEV (ON-SITE)Runoff Area=0.837 ac0.00% ImperviousRunoff Depth=0.42"Flow Length=235'Slope=0.2500 '/'Tc=6.9 minCN=WQRunoff=0.53 cfs0.029 af	
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=0.58"Tc=5.0 minCN=77Runoff=0.21 cfs0.010 af	
Link 1L: TOTAL PRE (ON-SITE)Inflow=0.53 cfs0.029 afPrimary=0.53 cfs0.029 af	
Link 3L: TOTAL-PREInflow=0.72 cfs0.039 afPrimary=0.72 cfs0.039 af	
Total Dunoff Area = 1,020 as Dunoff Valuma = 0,020 af Average Dunoff Donth = 0,4	<i></i>

Total Runoff Area = 1.039 acRunoff Volume = 0.039 afAverage Runoff Depth = 0.45"100.00% Pervious = 1.039 ac0.00% Impervious = 0.000 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 5
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method
Subcatchment1S: PRE-DEV (ON-SITE)Runoff Area=0.837 ac0.00% ImperviousRunoff Depth=0.62"Flow Length=235'Slope=0.2500 '/'Tc=6.9 minCN=WQRunoff=0.84 cfs0.043 af
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=0.82"Tc=5.0 minCN=77Runoff=0.30 cfs0.014 af
Link 1L: TOTAL PRE (ON-SITE)Inflow=0.84 cfs0.043 afPrimary=0.84 cfs0.043 af
Link 3L: TOTAL-PRE Inflow=1.11 cfs 0.057 af Primary=1.11 cfs 0.057 af
Total Dunoff Area = 4,020 as Dunoff Valuma = 0,057 af Average Dunoff Donth = 0,66

Total Runoff Area = 1.039 acRunoff Volume = 0.057 af
100.00% Pervious = 1.039 acAverage Runoff Depth = 0.66"
0.00% Impervious = 0.000 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Type II 24-hr 10-YR Rainfall=4.15" Prepared by Engineering Ventures, PC Printed 2/11/2021 HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 6	,
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method	
Subcatchment1S: PRE-DEV (ON-SITE)Runoff Area=0.837 ac0.00% ImperviousRunoff Depth=1.60"Flow Length=235'Slope=0.2500 '/'Tc=6.9 minCN=WQRunoff=2.31 cfs0.112 af	
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=1.93"Tc=5.0 minCN=77Runoff=0.72 cfs0.032 af	
Link 1L: TOTAL PRE (ON-SITE) Inflow=2.31 cfs 0.112 af Primary=2.31 cfs 0.112 af	
Link 3L: TOTAL-PRE Inflow=2.98 cfs 0.144 af Primary=2.98 cfs 0.144 af	
Total Dunoff Area = 4.020 as Dunoff Valuma = 0.444 of Average Dunoff Donth = 4.6	711

Total Runoff Area = 1.039 acRunoff Volume = 0.144 afAverage Runoff Depth = 1.67"100.00% Pervious = 1.039 ac0.00% Impervious = 0.000 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Type II 24-hr 25-YR Rainfall=4.2 Prepared by Engineering Ventures, PC Printed 2/11/20 HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page	21
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method	
Subcatchment1S: PRE-DEV (ON-SITE) Runoff Area=0.837 ac 0.00% Impervious Runoff Depth=2.0 Flow Length=235' Slope=0.2500 '/' Tc=6.9 min CN=WQ Runoff=2.92 cfs 0.141	
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=2.3Tc=5.0 minCN=77Runoff=0.89 cfs0.040	
Link 1L: TOTAL PRE (ON-SITE)Inflow=2.92 cfs0.141Primary=2.92 cfs0.141	
Link 3L: TOTAL-PRE Inflow=3.73 cfs 0.181 Primary=3.73 cfs 0.181	
Total Bunoff Area = 1 020 as Bunoff Valuma = 0 191 af Avarage Bunoff Donth =	2 00"

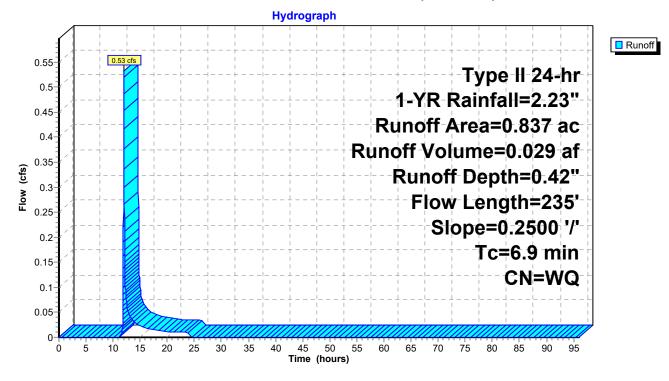
Total Runoff Area = 1.039 acRunoff Volume = 0.181 af
100.00% Pervious = 1.039 acAverage Runoff Depth = 2.09"
0.00% Impervious = 0.000 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Type II 24-hr 50-YR Rainfall=5.53' Prepared by Engineering Ventures, PC Printed 2/11/2021 HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 8	,
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method	
Subcatchment1S: PRE-DEV (ON-SITE)Runoff Area=0.837 ac0.00% ImperviousRunoff Depth=2.66"Flow Length=235'Slope=0.2500 '/'Tc=6.9 minCN=WQRunoff=3.84 cfs0.185 af	
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=3.07"Tc=5.0 minCN=77Runoff=1.14 cfs0.052 af	
Link 1L: TOTAL PRE (ON-SITE) Inflow=3.84 cfs 0.185 af Primary=3.84 cfs 0.185 af	
Link 3L: TOTAL-PRE Inflow=4.89 cfs 0.237 af Primary=4.89 cfs 0.237 af	
Total Dunoff Area = 4,020 as Dunoff Valuma = 0,027 af Average Dunoff Douth = 0.7	

Total Runoff Area = 1.039 acRunoff Volume = 0.237 af
100.00% Pervious = 1.039 acAverage Runoff Depth = 2.74"
0.00% Impervious = 0.000 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 9
Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Sim-Route method - Pond routing by Sim-Route method
Subcatchment1S: PRE-DEV (ON-SITE)Runoff Area=0.837 ac0.00% ImperviousRunoff Depth=3.88"Flow Length=235'Slope=0.2500 '/'Tc=6.9 minCN=WQRunoff=5.56 cfs0.271 af
Subcatchment5S: PRE-DEV (OFFSITE)Runoff Area=0.202 ac0.00% ImperviousRunoff Depth=4.37"Tc=5.0 minCN=77Runoff=1.60 cfs0.073 af
Link 1L: TOTAL PRE (ON-SITE)Inflow=5.56 cfs0.271 afPrimary=5.56 cfs0.271 af
Link 3L: TOTAL-PRE Inflow=7.03 cfs 0.344 af Primary=7.03 cfs 0.344 af
Total Dura off Area = 4.000 as Dura off Values = 0.044 of Augusta Bura off Darith = 0.07

Total Runoff Area = 1.039 acRunoff Volume = 0.344 afAverage Runoff Depth = 3.97"100.00% Pervious = 1.039 ac0.00% Impervious = 0.000 ac


Summary for Subcatchment 1S: PRE-DEV (ON-SITE)

Runoff	=	0.53 cfs @	12.00 hrs, Volume=	= 0.029 af, Depth= 0.42"
--------	---	------------	--------------------	--------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

Area	(ac) C	N Des	cription		
0	.546 7	70 Woo	ds, Good,	HSG C	
0	.291 7	7 Woo	ds, Good,	HSG D	
0	.837	Weig	ghted Aver	age	
0	.837	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	60	0.2500	0.17		Sheet Flow, AB
					Woods: Light underbrush n= 0.400 P2= 2.62"
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC
					Woodland Kv= 5.0 fps
6.9	235	Total			

Subcatchment 1S: PRE-DEV (ON-SITE)

Summary for Subcatchment 5S: PRE-DEV (OFFSITE)

Runoff = 0.21 cfs @ 11.97 hrs, Volume= 0.010 af, Depth= 0.58"

0.03 0.02 0.01

0

5

10 15

20

25

30

35

40

45

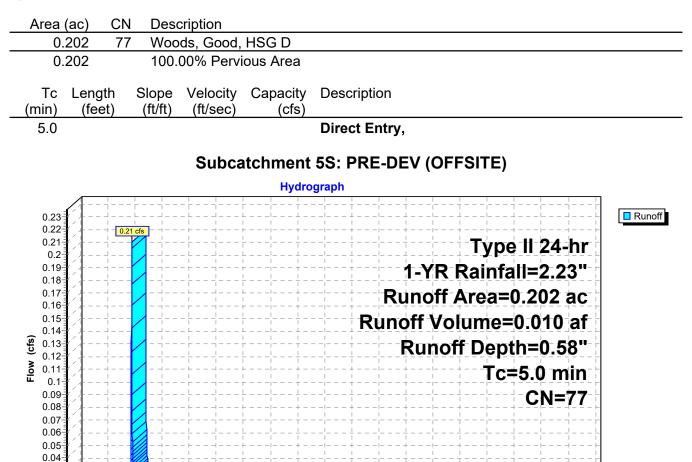
50 55 60

Time (hours)

65

70

75

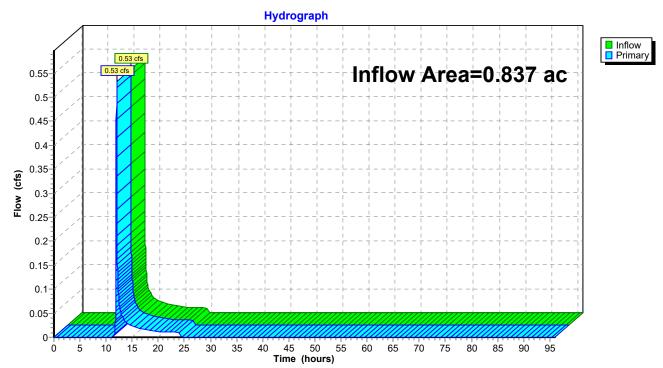

80

85

90

95

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

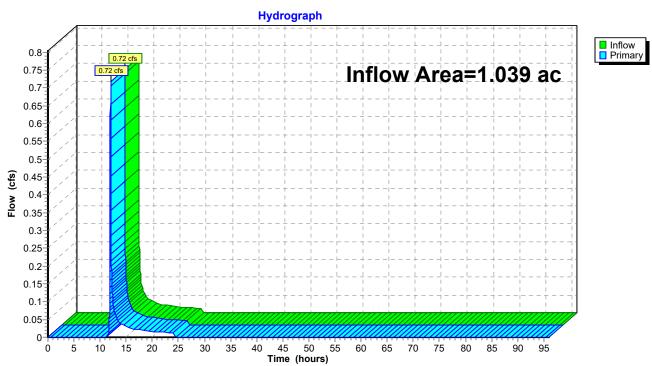


S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	ydro\	
20483-hydro	Type II 24-hr	1-YR Rainfall=2.23"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	.C	Page 3

Summary for Link 1L: TOTAL PRE (ON-SITE)

Inflow Are	ea =	0.837 ac,	0.00% Impervious	, Inflow Depth = 0	.42" for 1-YR event
Inflow	=	0.53 cfs @	12.00 hrs, Volum	e= 0.029 af	-
Primary	=	0.53 cfs @	12.01 hrs, Volum	e= 0.029 af	f, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

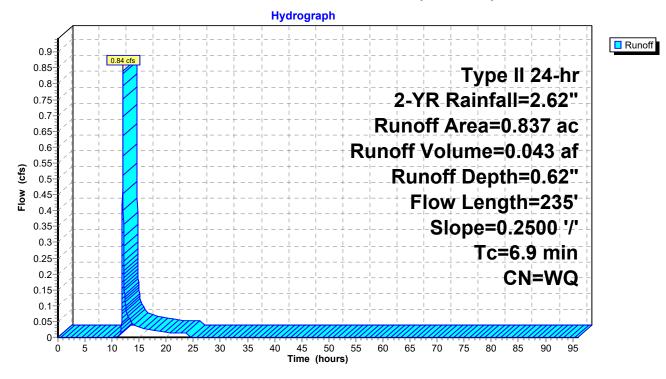
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\						
20483-hydro	Type II 24-hr	1-YR Rainfall=2.23"				
Prepared by Engineering Ventures, PC		Printed 2/11/2021				
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	.C	Page 4				

Summary for Link 3L: TOTAL- PRE

Inflow Area	a =	1.039 ac,	0.00% Impervious,	Inflow Depth = 0.	.45" for 1-YR event
Inflow	=	0.72 cfs @	12.00 hrs, Volume	e= 0.039 af	
Primary	=	0.72 cfs @	12.01 hrs, Volume	e= 0.039 af,	, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 3L: TOTAL- PRE


Summary for Subcatchment 1S: PRE-DEV (ON-SITE)

Runoff	=	0.84 cfs @	12.00 hrs, \	/olume=	0.043 af, Depth= 0.62"
--------	---	------------	--------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

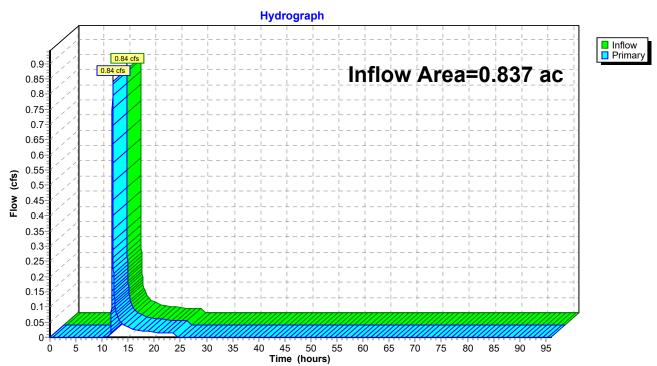
Area	(ac) C	N Des	cription		
0.	.546 7	70 Woo	ds, Good,	HSG C	
0.	.291 7	7 Woo	ds, Good,	HSG D	
0.	.837	Weig	ghted Aver	age	
0.	.837	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	60	0.2500	0.17		Sheet Flow, AB
					Woods: Light underbrush n= 0.400 P2= 2.62"
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC
					Woodland Kv= 5.0 fps
6.9	235	Total			


Subcatchment 1S: PRE-DEV (ON-SITE)

Summary for Subcatchment 5S: PRE-DEV (OFFSITE)

Runoff = 0.30 cfs @ 11.97 hrs, Volume= 0.014 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

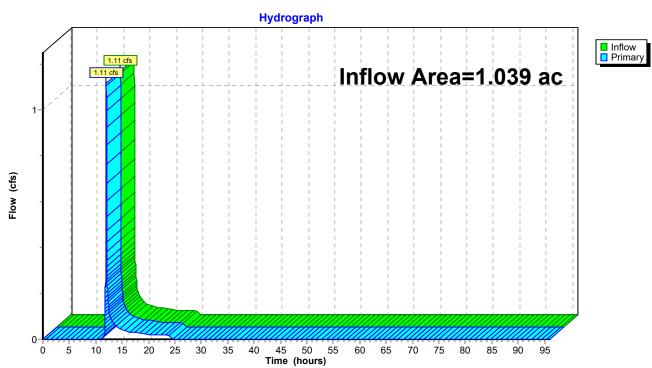


S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	nydro\
20483-hydro	Type II 24-hr 2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC	Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	_C Page 7

Summary for Link 1L: TOTAL PRE (ON-SITE)

Inflow Area	a =	0.837 ac,	0.00% Impervious	, Inflow Depth =	0.62" for 2-YR event
Inflow	=	0.84 cfs @	12.00 hrs, Volum	e= 0.043 a	af
Primary	=	0.84 cfs @	12.01 hrs, Volum	e= 0.043 a	af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

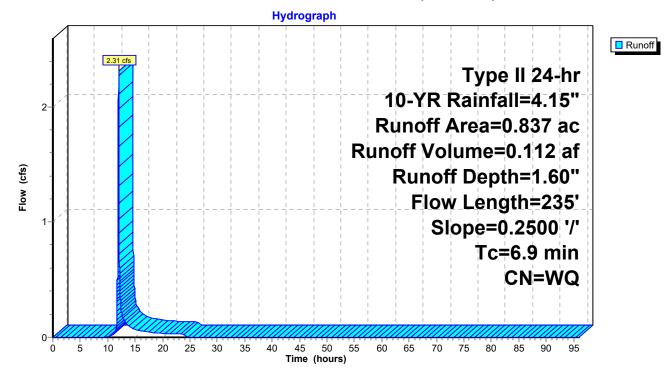
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	iydro\
20483-hydro	Type II 24-hr 2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC	Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	C Page 8

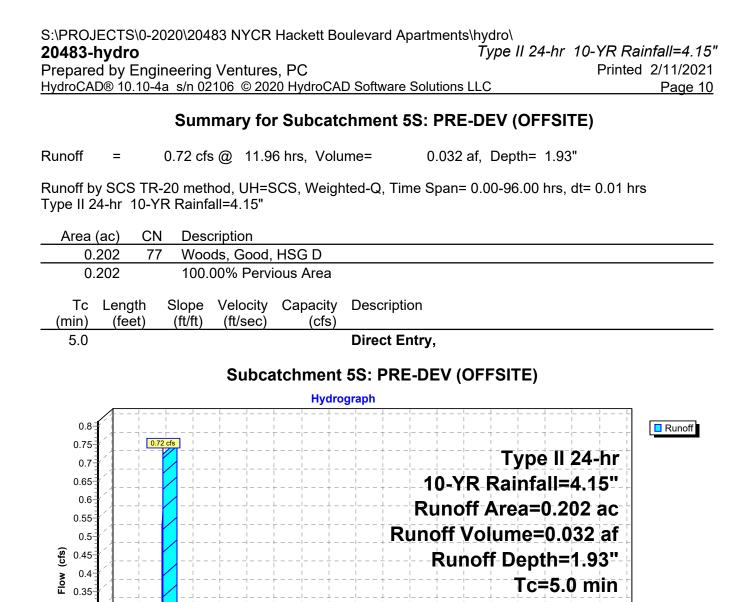
Summary for Link 3L: TOTAL- PRE

Inflow Are	a =	1.039 ac,	0.00% Impervious, Ir	nflow Depth = 0.66"	for 2-YR event
Inflow	=	1.11 cfs @	11.99 hrs, Volume=	0.057 af	
Primary	=	1.11 cfs @	12.00 hrs, Volume=	0.057 af, Atte	en= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 3L: TOTAL- PRE


Summary for Subcatchment 1S: PRE-DEV (ON-SITE)


Runoff	=	2.31 cfs @	11.99 hrs,	Volume=	0.112 af, Depth= 1.60"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

Area	(ac) C	N Des	cription		
0.	546 7	70 Woo	ds, Good,	HSG C	
0.	291 7	77 Woo	ds, Good,	HSG D	
0.	837	Weig	ghted Aver	age	
0.	837	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	60	0.2500	0.17		Sheet Flow, AB
					Woods: Light underbrush n= 0.400 P2= 2.62"
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC
					Woodland Kv= 5.0 fps
6.9	235	Total			

Subcatchment 1S: PRE-DEV (ON-SITE)

0.3-0.25-0.2-0.15-0.1-0.05-

5

0

10 15 20

25

30

35

40

45

50

Time (hours)

55 60

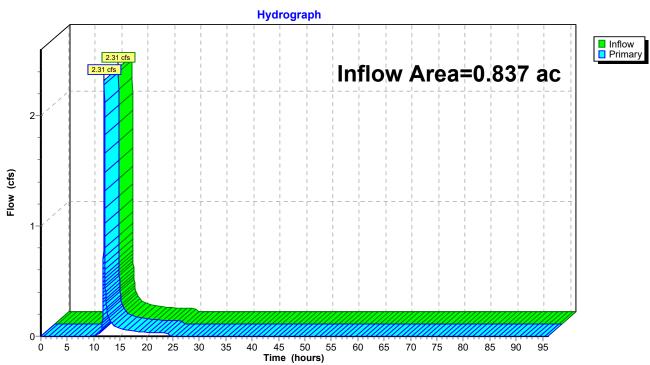
65

70

75 80

85

CN=77

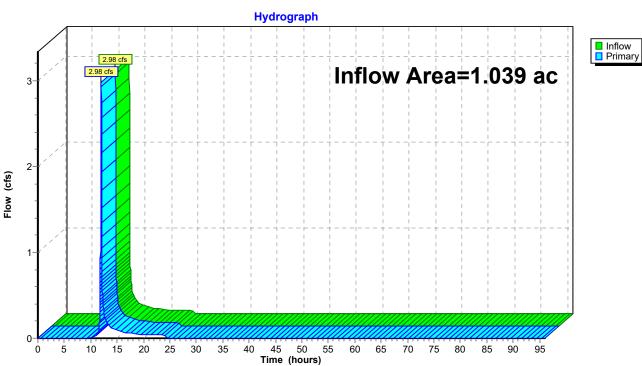

90 95

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\						
20483-hydro	Ťype II 24-hr	10-YR Rainfall=4.15"				
Prepared by Engineering Ventures, PC		Printed 2/11/2021				
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC	Page 11				

Summary for Link 1L: TOTAL PRE (ON-SITE)

Inflow Are	ea =	0.837 ac,	0.00% Impervious,	Inflow Depth =	1.60"	for 10-YR event
Inflow	=	2.31 cfs @	11.99 hrs, Volum	e= 0.112	af	
Primary	=	2.31 cfs @	12.00 hrs, Volum	e= 0.112	af, Atte	en= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

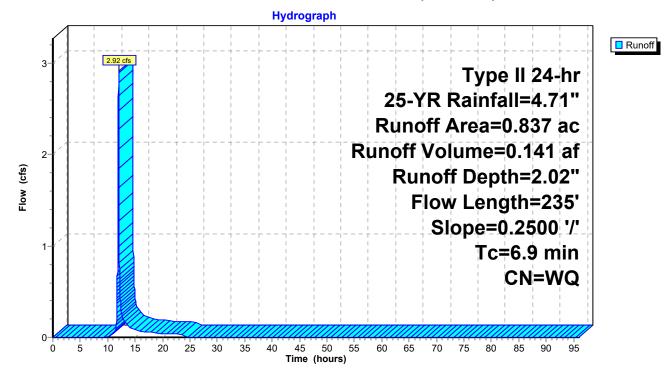
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 12

Summary for Link 3L: TOTAL- PRE

Inflow Are	a =	1.039 ac,	0.00% Impervious,	Inflow Depth = 1	.67" for 10-YR event
Inflow	=	2.98 cfs @	11.99 hrs, Volume	e= 0.144 af	
Primary	=	2.98 cfs @	12.00 hrs, Volume	e= 0.144 af	f, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

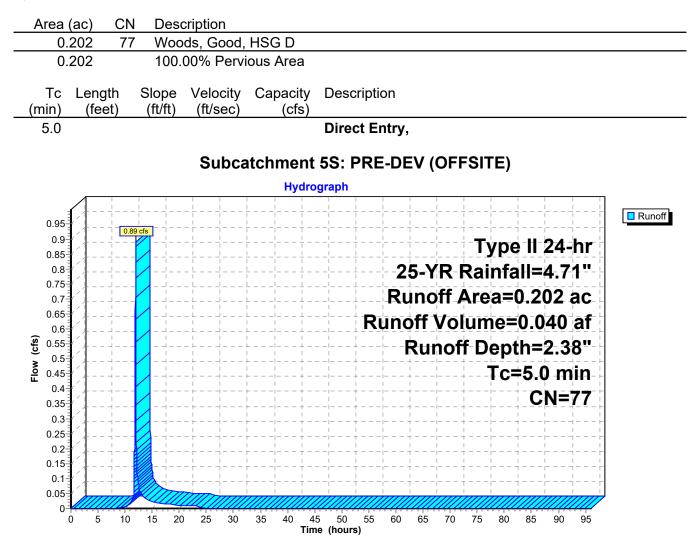
Link 3L: TOTAL- PRE


Summary for Subcatchment 1S: PRE-DEV (ON-SITE)

Runoff = 2.92 cfs @ 11.99 hrs, Volume= 0.141 af, Depth= 2.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

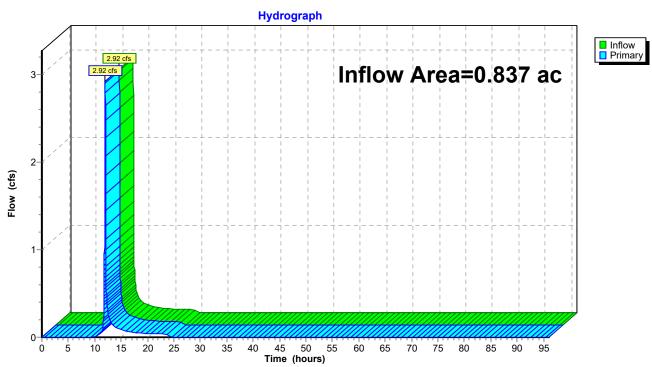
Area	(ac) C	N Des	cription					
0.	546 7	70 Woo	ds, Good,	HSG C				
0.	291 7	77 Woo	ds, Good,	HSG D				
0.	0.837 Weighted Average							
0.	837	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.7	60	0.2500	0.17		Sheet Flow, AB			
					Woods: Light underbrush n= 0.400 P2= 2.62"			
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC			
					Woodland Kv= 5.0 fps			
6.9	235	Total						


Subcatchment 1S: PRE-DEV (ON-SITE)

Summary for Subcatchment 5S: PRE-DEV (OFFSITE)

Runoff = 0.89 cfs @ 11.96 hrs, Volume= 0.040 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

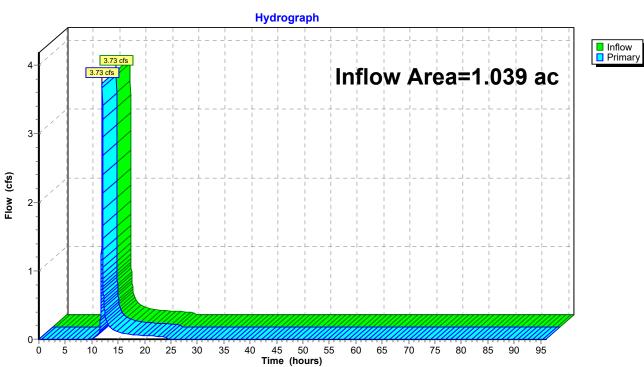


S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\				
20483-hydro	Type II 24-hr 25-YR Rainfall=4.71"			
Prepared by Engineering Ventures, PC	Printed 2/11/2021			
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC Page 15			

Summary for Link 1L: TOTAL PRE (ON-SITE)

Inflow Are	a =	0.837 ac,	0.00% Impervious	, Inflow Depth =	2.02"	for 25-YR event
Inflow	=	2.92 cfs @	11.99 hrs, Volum	e= 0.141	af	
Primary	=	2.92 cfs @	12.00 hrs, Volum	e= 0.141	af, Atte	en= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

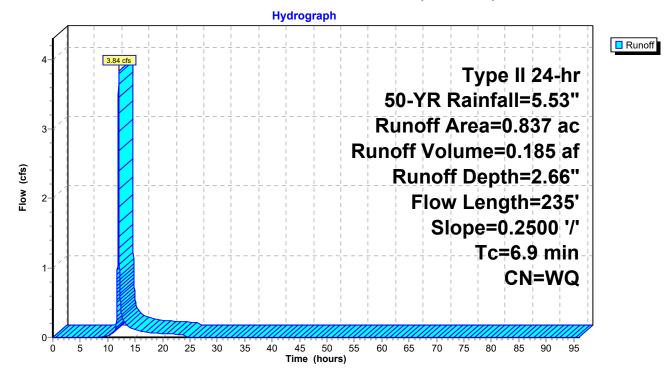
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 25-YR Rainfall=4.71"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 16

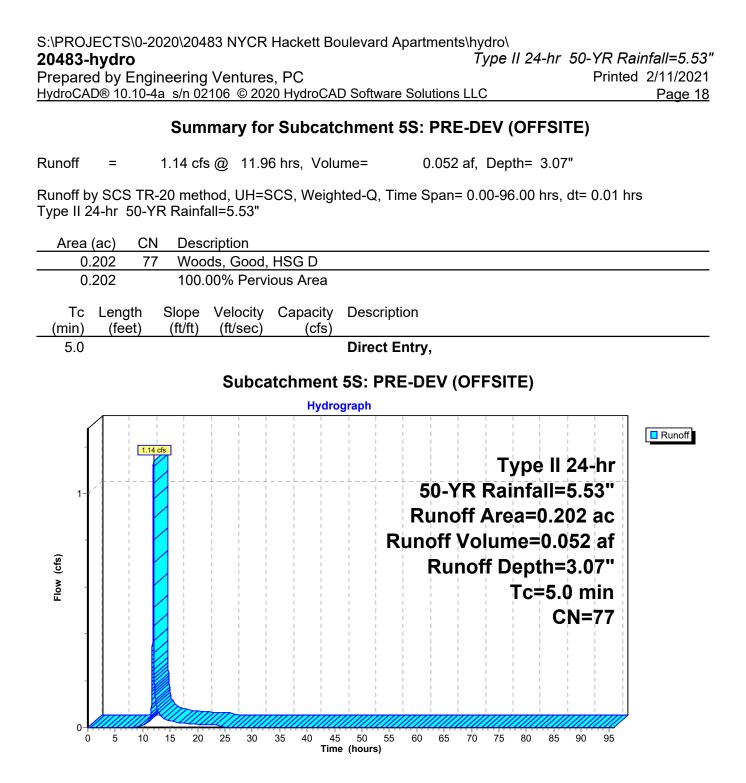
Summary for Link 3L: TOTAL- PRE

Inflow Are	a =	1.039 ac,	0.00% Impervious,	Inflow Depth =	2.09"	for 25-YR event
Inflow	=	3.73 cfs @	11.99 hrs, Volume	e= 0.181	af	
Primary	=	3.73 cfs @	12.00 hrs, Volume	e= 0.181	af, Atte	en= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 3L: TOTAL- PRE

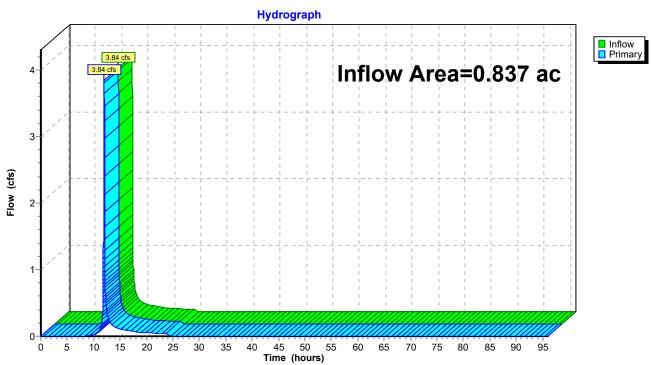

Summary for Subcatchment 1S: PRE-DEV (ON-SITE)


Runoff = 3.84 cfs @ 11.98 hrs, Volume= 0.185 af, Depth= 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

Area	(ac) C	N Des	cription					
0.	546 7	70 Woo	ds, Good,	HSG C				
0.	291 7	77 Woo	ds, Good,	HSG D				
0.	0.837 Weighted Average							
0.	837	100.	00% Pervi	ous Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.7	60	0.2500	0.17		Sheet Flow, AB			
					Woods: Light underbrush n= 0.400 P2= 2.62"			
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC			
					Woodland Kv= 5.0 fps			
6.9	235	Total						

Subcatchment 1S: PRE-DEV (ON-SITE)

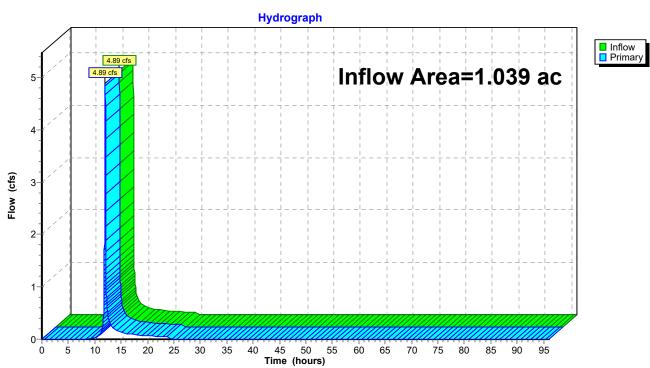


S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr 50-YR Rainfall=5.53"				
Prepared by Engineering Ventures, PC	Printed 2/11/2021				
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC Page 19				

Summary for Link 1L: TOTAL PRE (ON-SITE)

Inflow Are	a =	0.837 ac,	0.00% Impervious,	Inflow Depth = 2	.66" for 50-YR event
Inflow	=	3.84 cfs @	11.98 hrs, Volume	= 0.185 af	
Primary	=	3.84 cfs @	11.99 hrs, Volume	= 0.185 af	, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\				
20483-hydro	Ťype II 24-hr	50-YR Rainfall=5.53"		
Prepared by Engineering Ventures, PC		Printed 2/11/2021		
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions I	LC	Page 20		

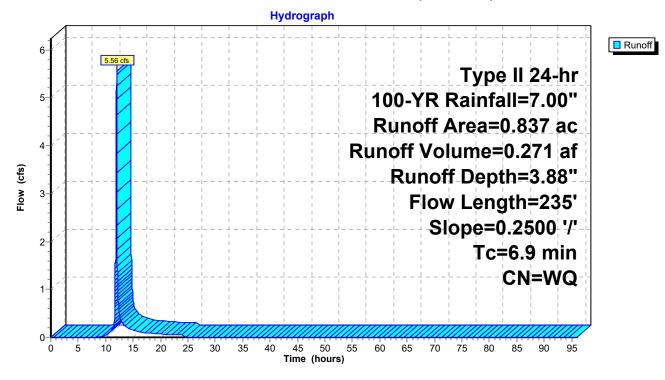
Summary for Link 3L: TOTAL- PRE

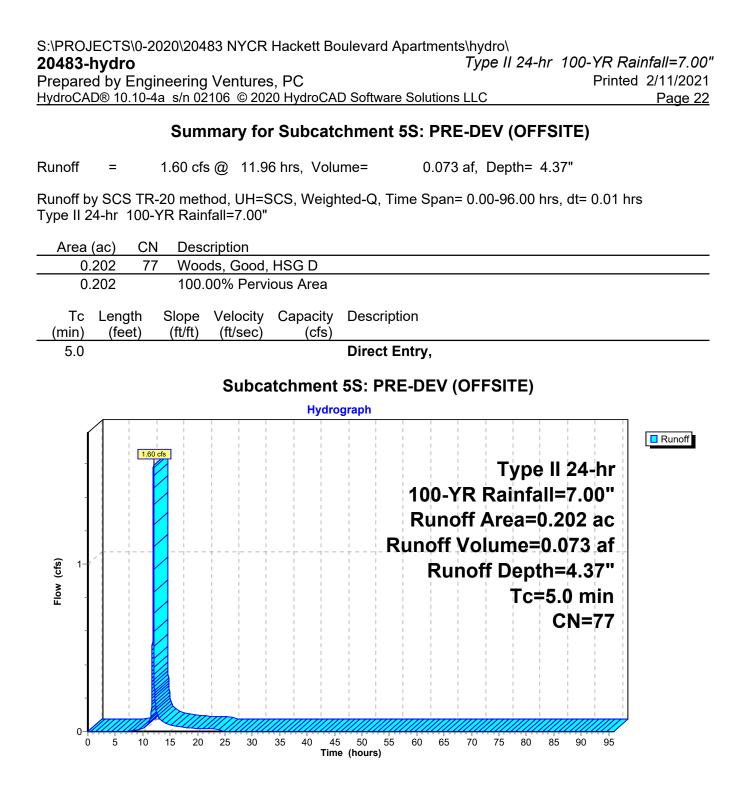
Inflow Are	a =	1.039 ac,	0.00% Impervious,	Inflow Depth = 2.74"	for 50-YR event
Inflow	=	4.89 cfs @	11.99 hrs, Volume=	= 0.237 af	
Primary	=	4.89 cfs @	12.00 hrs, Volume=	= 0.237 af, Att	ten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 3L: TOTAL- PRE

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr	100-YR Rainfall=7.00"			
Prepared by Engineering Ventures, PC		Printed 2/11/2021			
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	s LLC	Page 21			

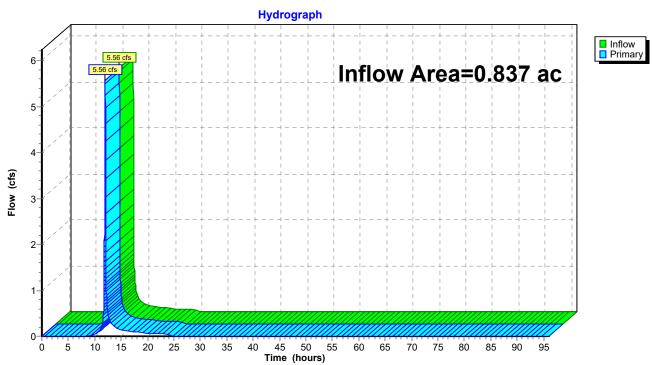

Summary for Subcatchment 1S: PRE-DEV (ON-SITE)


Runoff	=	5.56 cfs @	11.98 hrs,	Volume=	0.271 af, Depth= 3.88"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

Area	(ac) C	N Des	cription			
0.	546 7	70 Woo	ds, Good,	HSG C		
0.	291 7	77 Woo	ds, Good,	HSG D		
0.	0.837 Weighted Average					
0.	0.837 100.00% Pervious Area					
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.7	60	0.2500	0.17		Sheet Flow, AB	
					Woods: Light underbrush n= 0.400 P2= 2.62"	
1.2	175	0.2500	2.50		Shallow Concentrated Flow, BC	
					Woodland Kv= 5.0 fps	
6.9	235	Total				

Subcatchment 1S: PRE-DEV (ON-SITE)

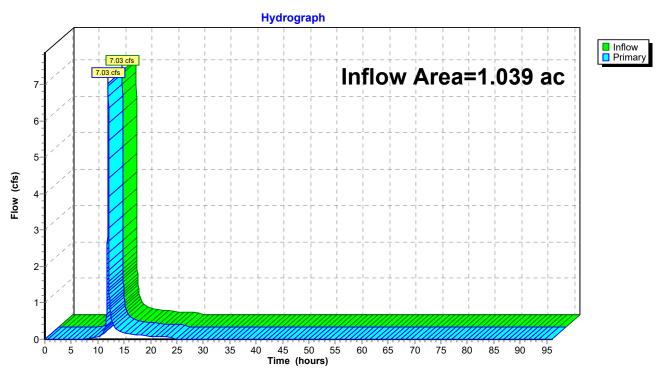


S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 100-YR Rainfall=7.00"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 23

Summary for Link 1L: TOTAL PRE (ON-SITE)

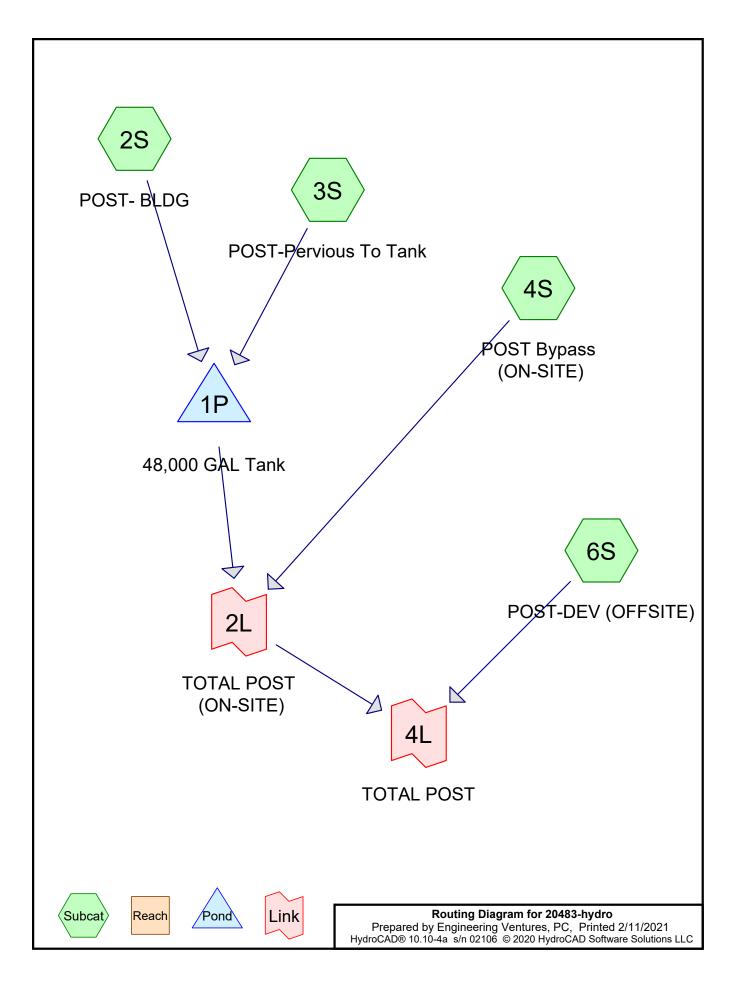
Inflow Are	a =	0.837 ac,	0.00% Impervious,	Inflow Depth =	3.88" for 100-YR event
Inflow	=	5.56 cfs @	11.98 hrs, Volume	e= 0.271 a	af
Primary	=	5.56 cfs @	11.99 hrs, Volume	;= 0.271 a	af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 1L: TOTAL PRE (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 100-YR Rainfall=7.00"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 24

Summary for Link 3L: TOTAL- PRE


Inflow Area	ı =	1.039 ac,	0.00% Impervious,	Inflow Depth =	3.97"	for 100-YR event
Inflow	=	7.03 cfs @	11.98 hrs, Volume	e= 0.344	af	
Primary	=	7.03 cfs @	11.99 hrs, Volume	e= 0.344	af, Atte	en= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 3L: TOTAL- PRE

Post-Development

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 2

Area Listing (selected nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
0.076	74	>75% Grass cover, Good, HSG C (3S, 4S)	
0.235	80	>75% Grass cover, Good, HSG D (4S, 6S)	
0.362	98	Building (2S)	
0.083	98	Impervious (4S, 6S)	
0.283	70	Woods, Good, HSG C (3S)	
1.039	85	TOTAL AREA	

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\ 20483-hydro Prepared by Engineering Ventures, PC Print HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC

Printed 2/11/2021 Page 3

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.359	HSG C	3S, 4S
0.235	HSG D	4S, 6S
0.445	Other	2S, 4S, 6S
1.039		TOTAL AREA

S:\PROJECTS\0-2020\20483 NYCR Hacket 20483-hydro Prepared by Engineering Ventures, PC <u>HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro</u>	Type II 24-hr 1-YR Rainfall=2.23" Printed 2/11/2021
Runoff by SCS TF	96.00 hrs, dt=0.01 hrs, 9601 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=2.00" Tc=5.0 min CN=98 Runoff=1.17 cfs 0.060 af
	c Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=0.36" ow Length=163' Tc=6.1 min CN=WQ Runoff=0.19 cfs 0.010 af
Subcatchment4S: POST Bypass (ON-SITE) Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=0.89" Tc=5.0 min CN=WQ Runoff=0.20 cfs 0.009 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=1.11" Tc=5.0 min CN=WQ Runoff=0.38 cfs 0.019 af
Pond 1P: 48,000 GAL Tank	Peak Elev=163.73' Storage=1,922 cf Inflow=1.33 cfs 0.071 af Outflow=0.03 cfs 0.071 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=0.22 cfs 0.080 af Primary=0.22 cfs 0.080 af
Link 4L: TOTAL POST	Inflow=0.60 cfs 0.099 af Primary=0.60 cfs 0.099 af
Total Runoff Area = 1 039	ac_ Runoff Volume = 0.099 af_Average Runoff Depth = 1.14

Total Runoff Area = 1.039 acRunoff Volume = 0.099 afAverage Runoff Depth = 1.14"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett 20483-hydro Prepared by Engineering Ventures, PC <u>HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro</u>	Type II 24-hr 2-YR Rainfall=2.62" Printed 2/11/2021
Runoff by SCS TR	96.00 hrs, dt=0.01 hrs, 9601 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=2.39" Tc=5.0 min CN=98 Runoff=1.38 cfs 0.072 af
	Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=0.54" ow Length=163' Tc=6.1 min CN=WQ Runoff=0.31 cfs 0.016 af
Subcatchment4S: POST Bypass (ON-SITE	Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=1.17" Tc=5.0 min CN=WQ Runoff=0.26 cfs 0.012 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=1.41" Tc=5.0 min CN=WQ Runoff=0.49 cfs 0.024 af
Pond 1P: 48,000 GAL Tank	Peak Elev=163.93' Storage=2,146 cf Inflow=1.66 cfs 0.088 af Outflow=0.11 cfs 0.088 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=0.29 cfs 0.100 af Primary=0.29 cfs 0.100 af
Link 4L: TOTAL POST	Inflow=0.78 cfs 0.124 af Primary=0.78 cfs 0.124 af
Total Runoff Area = 1 039	ac Runoff Volume = 0.124 af Average Runoff Depth = 1.43

Total Runoff Area = 1.039 acRunoff Volume = 0.124 afAverage Runoff Depth = 1.43"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett 20483-hydro Prepared by Engineering Ventures, PC <u>HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro</u>	Type II 24-hr 10-YR Rainfall=4.15" Printed 2/11/2021
Runoff by SCS TR	96.00 hrs, dt=0.01 hrs, 9601 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=3.91" Tc=5.0 min CN=98 Runoff=2.20 cfs 0.118 af
	Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=1.48" ow Length=163' Tc=6.1 min CN=WQ Runoff=0.92 cfs 0.043 af
Subcatchment4S: POST Bypass (ON-SITE) Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=2.41" Tc=5.0 min CN=WQ Runoff=0.54 cfs 0.025 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=2.71" Tc=5.0 min CN=WQ Runoff=0.94 cfs 0.046 af
Pond 1P: 48,000 GAL Tank	Peak Elev=165.11' Storage=3,454 cf Inflow=3.09 cfs 0.161 af Outflow=0.51 cfs 0.161 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=0.89 cfs 0.186 af Primary=0.89 cfs 0.186 af
Link 4L: TOTAL POST	Inflow=1.79 cfs 0.232 af Primary=1.79 cfs 0.232 af
Total Pupoff Area = 1.039	ac Runoff Volume = 0.232 af Average Runoff Depth = 2.68

Total Runoff Area = 1.039 acRunoff Volume = 0.232 afAverage Runoff Depth = 2.68"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

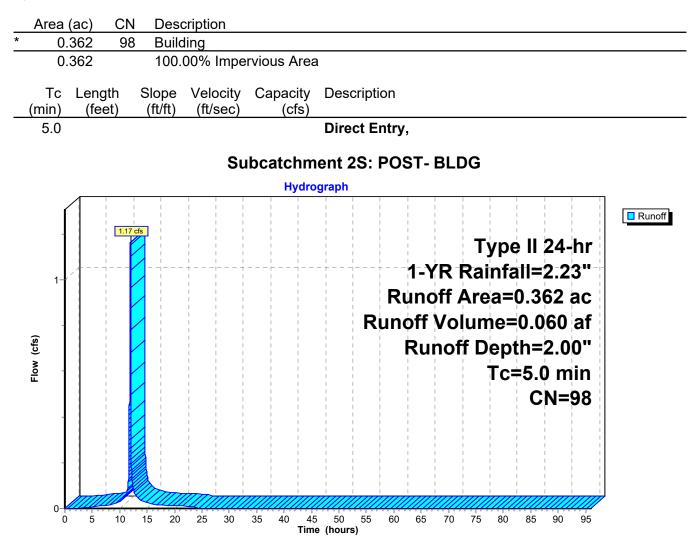
S:\PROJECTS\0-2020\20483 NYCR Hackett 20483-hydro Prepared by Engineering Ventures, PC <u>HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro</u>	Type II 24-hr 25-YR Rainfall=4.71" Printed 2/11/2021
Runoff by SCS TR	96.00 hrs, dt=0.01 hrs, 9601 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=4.47" Tc=5.0 min CN=98 Runoff=2.50 cfs 0.135 af
	、Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=1.88" ow Length=163' Tc=6.1 min CN=WQ Runoff=1.17 cfs 0.055 af
Subcatchment4S: POST Bypass (ON-SITE) Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=2.89" Tc=5.0 min CN=WQ Runoff=0.64 cfs 0.030 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=3.21" Tc=5.0 min CN=WQ Runoff=1.11 cfs 0.054 af
Pond 1P: 48,000 GAL Tank	Peak Elev=165.65' Storage=4,048 cf Inflow=3.64 cfs 0.190 af Outflow=0.60 cfs 0.190 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=1.09 cfs 0.220 af Primary=1.09 cfs 0.220 af
Link 4L: TOTAL POST	Inflow=2.17 cfs 0.274 af Primary=2.17 cfs 0.274 af
Total Dupoff Area = 1.020	a Bunoff Volume = 0.274 of Average Bunoff Denth = 2.17

Total Runoff Area = 1.039 acRunoff Volume = 0.274 afAverage Runoff Depth = 3.17"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett 20483-hydro Prepared by Engineering Ventures, PC <u>HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro</u>	Type II 24-hr 50-YR Rainfall=5.53" Printed 2/11/2021
Runoff by SCS TR	96.00 hrs, dt=0.01 hrs, 9601 points 2-20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=5.29" Tc=5.0 min CN=98 Runoff=2.94 cfs 0.160 af
	Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=2.50" w Length=163' Tc=6.1 min CN=WQ Runoff=1.56 cfs 0.073 af
Subcatchment4S: POST Bypass (ON-SITE	Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=3.62" Tc=5.0 min CN=WQ Runoff=0.80 cfs 0.038 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=3.96" Tc=5.0 min CN=WQ Runoff=1.36 cfs 0.067 af
Pond 1P: 48,000 GAL Tank	Peak Elev=166.46' Storage=4,954 cf Inflow=4.46 cfs 0.233 af Outflow=0.73 cfs 0.232 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=1.37 cfs 0.270 af Primary=1.37 cfs 0.270 af
Link 4L: TOTAL POST	Inflow=2.70 cfs 0.337 af Primary=2.70 cfs 0.337 af
Total Rupoff Area = 1.030	ac Bunoff Volume = 0.337 af Average Bunoff Depth = 3.89

Total Runoff Area = 1.039 acRunoff Volume = 0.337 afAverage Runoff Depth = 3.89"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett 20483-hydro Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 Hydro	Type II 24-hr 100-YR Rainfall=7.00" Printed 2/11/2021
Runoff by SCS TR	96.00 hrs, dt=0.01 hrs, 9601 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Sim-Route method
Subcatchment2S: POST-BLDG	Runoff Area=0.362 ac 100.00% Impervious Runoff Depth=6.76" Tc=5.0 min CN=98 Runoff=3.73 cfs 0.204 af
	Runoff Area=0.349 ac 0.00% Impervious Runoff Depth=3.70" w Length=163' Tc=6.1 min CN=WQ Runoff=2.29 cfs 0.108 af
Subcatchment4S: POST Bypass (ON-SITE	Runoff Area=0.126 ac 15.87% Impervious Runoff Depth=4.97" Tc=5.0 min CN=WQ Runoff=1.09 cfs 0.052 af
Subcatchment6S: POST-DEV (OFFSITE)	Runoff Area=0.202 ac 31.19% Impervious Runoff Depth=5.34" Tc=5.0 min CN=WQ Runoff=1.82 cfs 0.090 af
Pond 1P: 48,000 GAL Tank	Peak Elev=167.75' Storage=6,383 cf Inflow=5.97 cfs 0.312 af Outflow=1.88 cfs 0.311 af
Link 2L: TOTAL POST (ON-SITE)	Inflow=2.25 cfs 0.364 af Primary=2.25 cfs 0.364 af
Link 4L: TOTAL POST	Inflow=3.61 cfs 0.453 af Primary=3.61 cfs 0.453 af
Total Pupoff Area = 1.039	ac Runoff Volume = 0.454 af Average Runoff Depth = 5.24

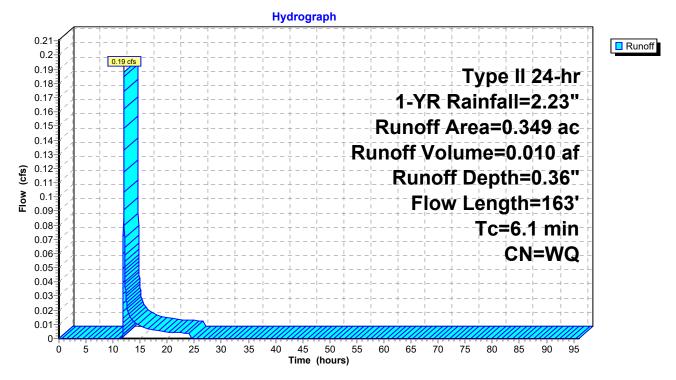

Total Runoff Area = 1.039 acRunoff Volume = 0.454 afAverage Runoff Depth = 5.24"57.17% Pervious = 0.594 ac42.83% Impervious = 0.445 ac

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	iydro\	
20483-hydro	Type II 24-hr	1-YR Rainfall=2.23"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	.C	Page 1

Summary for Subcatchment 2S: POST- BLDG

Runoff = 1.17 cfs @ 11.96 hrs, Volume= 0.060 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

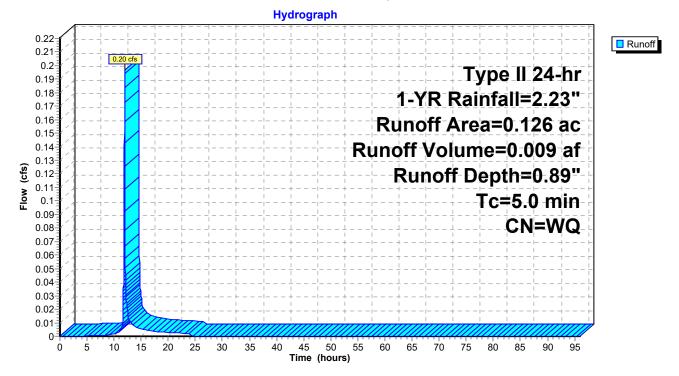

Summary for Subcatchment 3S: POST-Pervious To Tank

Runoff = 0.19 cfs @ 11.99 hrs, Volume= 0.010 af, Depth= 0.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

Area	(ac) C	N Dese	cription				
0.	283 7	'0 Woo	ds, Good,	HSG C			
0.	066 7	′4 >75°	% Grass c	over, Good	, HSG C		
0.	0.349 Weighted Average						
0.	349	100.	00% Pervi	ous Area			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.7	60	0.2500	0.17		Sheet Flow, AB		
					Woods: Light underbrush n= 0.400 P2= 2.62"		
0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC		
					Woodland Kv= 5.0 fps		
0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD		
					Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'		
					n= 0.022 Earth, clean & straight		
6.1	163	Total					

Subcatchment 3S: POST-Pervious To Tank

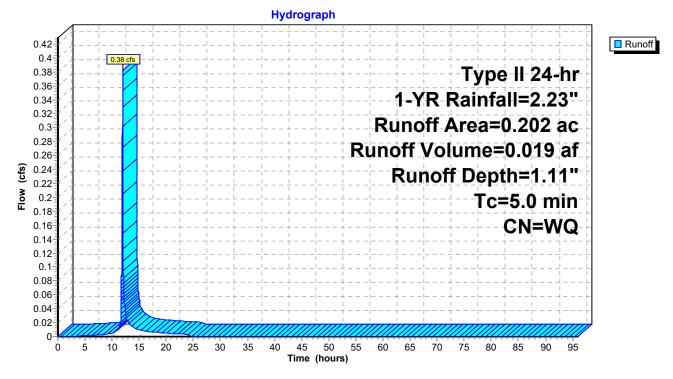

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 0.20 cfs @ 11.96 hrs, Volume= 0.009 af, Depth= 0.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

_	Area ((ac)	CN	Desc	ription		
*	0.0	020	98	Impe	rvious		
	0.0	010	74	>75%	6 Grass co	over, Good	I, HSG C
	0.0	096	80	>75%	6 Grass co	over, Good	I, HSG D
	0.	126		Weig	hted Aver	age	
	0.	106			3% Pervio		
	0.0	020		15.87	7% Imper	ious Area/	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 0.38 cfs @ 11.96 hrs, Volume= 0.019 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

_	Area (ac)	CN	Desc	cription		
*	0.0)63	98	Impe	ervious		
	0.1	139	80	>759	% Grass co	over, Good	, HSG D
	0.2	202		Weig	ghted Aver	age	
	0.1	139		68.8	1% Pervio	us Area	
	0.0	063		31.1	9% Imper	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 1-YR Rainfall=2.23"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 5

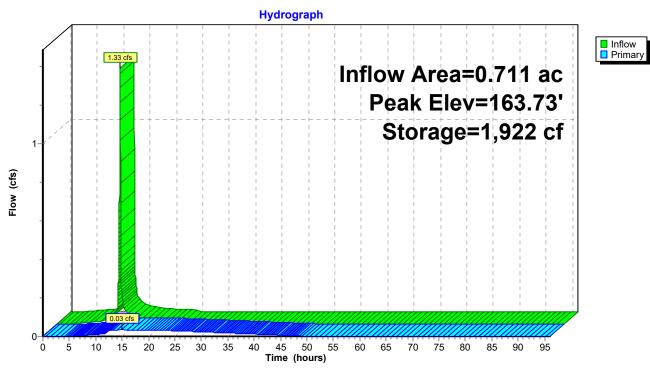
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area	ı =	0.711 ac, 50.91% Impervious, Inflow Depth = 1.20" for 1-YR event
Inflow	=	1.33 cfs @ 11.96 hrs, Volume= 0.071 af
Outflow	=	0.03 cfs @ 14.92 hrs, Volume= 0.071 af, Atten= 97%, Lag= 177.4 min
Primary	=	0.03 cfs @ 14.92 hrs, Volume= 0.071 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 163.73' @ 14.92 hrs Surf.Area= 1,110 sf Storage= 1,922 cf

Plug-Flow detention time= 712.1 min calculated for 0.071 af (100% of inflow) Center-of-Mass det. time= 711.0 min (1,492.0 - 781.0)

Volume	Invert	Avail.Stor	rage Storage Description
#1	162.00'	6,38	3 cf 18.50'W x 60.00'L x 5.75'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Primary	162.00'	12.0" Round Culvert
			L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
Primary	OutFlow Max	x=0.03 cfs @	D 14.92 hrs HW=163.73' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 0.03 cfs of 4.20 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.03 cfs @ 6.26 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	iydro\	
20483-hydro	Type II 24-hr	1-YR Rainfall=2.23"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	C	Page 6

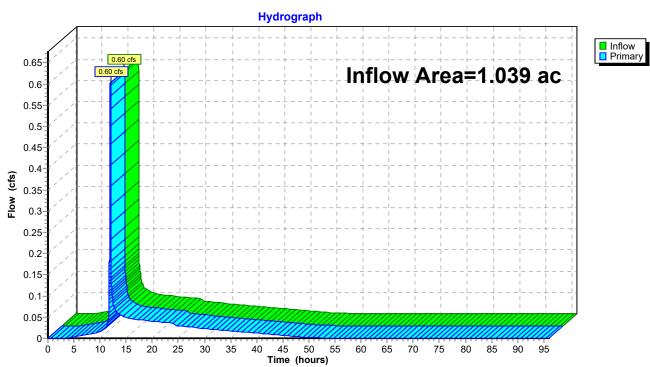
Pond 1P: 48,000 GAL Tank

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Area	a =	0.837 ac, 45.64% Impervie	ous, Inflow Depth >	1.15" for 1-YR event
Inflow	=	0.22 cfs @ 11.97 hrs, Vol	lume= 0.080	af
Primary	=	0.22 cfs @ 11.98 hrs, Vol	lume= 0.080	af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 2L: TOTAL POST (ON-SITE)

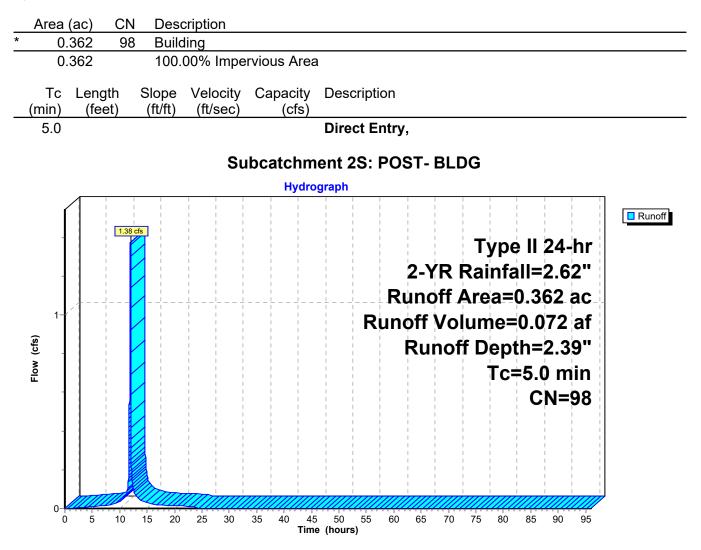

Hydrograph Inflow
 Primary 0.22 cfs 0.24 Inflow Area=0.837 ac 0.22 cfs 0.23 0.22 0.21-0.2 0.19 0.18-0.17 0.16 0.15 (**s**) 0.14 Flow 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (hours)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	ydro\	
20483-hydro	Type II 24-hr	1-YR Rainfall=2.23"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	.C	Page 8

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 1.14" for 1-YR event
Inflow	=	0.60 cfs @ 11.97 hrs, Volume= 0.099 af
Primary	=	0.60 cfs @ 11.98 hrs, Volume= 0.099 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

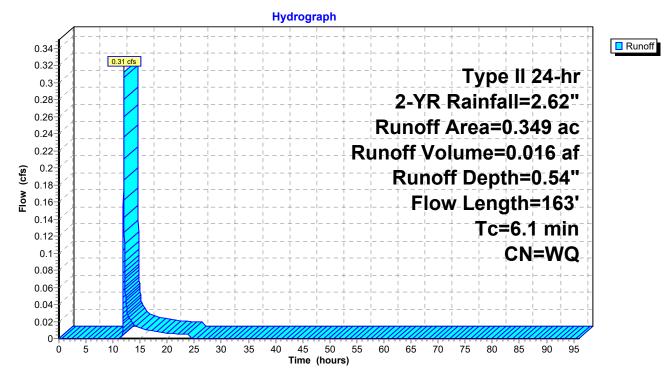

Link 4L: TOTAL POST

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	iydro\
20483-hydro	Type II 24-hr 2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC	Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	C Page 9

Summary for Subcatchment 2S: POST- BLDG

Runoff = 1.38 cfs @ 11.96 hrs, Volume= 0.072 af, Depth= 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

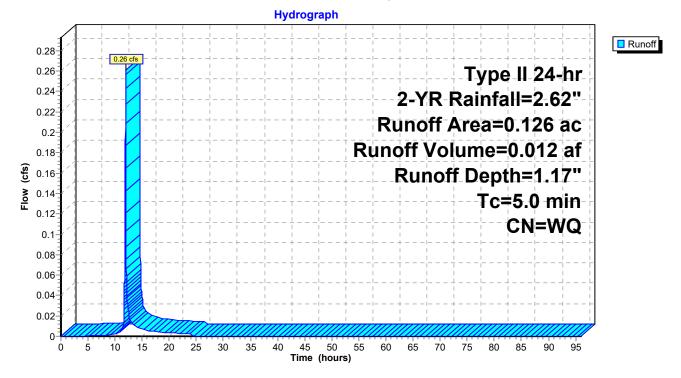

Summary for Subcatchment 3S: POST-Pervious To Tank

Runoff = 0.31 cfs @ 11.99 hrs, Volume= 0.016 af, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

Area	(ac) C	N Dese	cription		
0.	283 7	'0 Woo	ds, Good,	HSG C	
0.	066 7	′4 >75°	% Grass c	over, Good	, HSG C
0.	349	Weig	ghted Aver	age	
0.	349	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.7	60	0.2500	0.17		Sheet Flow, AB
					Woods: Light underbrush n= 0.400 P2= 2.62"
0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC
					Woodland Kv= 5.0 fps
0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD
					Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'
					n= 0.022 Earth, clean & straight
6.1	163	Total			

Subcatchment 3S: POST-Pervious To Tank

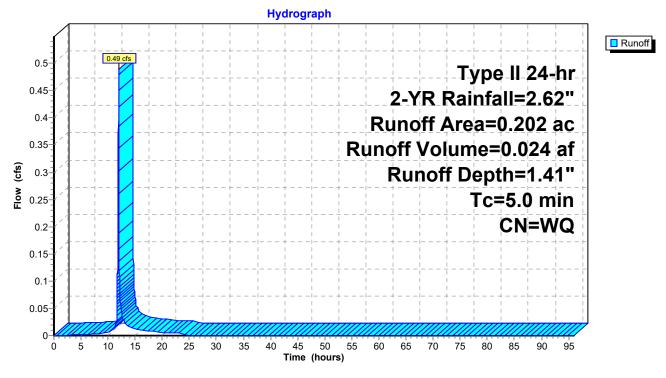

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 0.26 cfs @ 11.96 hrs, Volume= 0.012 af, Depth= 1.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

_	Area	(ac)	CN	Desc	cription		
*	0.	020	98	Impe	ervious		
	0.	010	74	>75%	6 Grass co	over, Good	d, HSG C
	0.	096	80	>75%	6 Grass co	over, Good	d, HSG D
	0.	126		Weig	hted Aver	age	
	0.106			-	3% Pervio		
	0.	020		15.8	7% Imper	ious Area	l
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
	5.0						Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 0.49 cfs @ 11.96 hrs, Volume= 0.024 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 2-YR Rainfall=2.62"

_	Area ((ac)	CN	Desc	cription		
*	0.	063	98	Impe	ervious		
	0.	139	80	>759	% Grass co	over, Good	, HSG D
	0.202 Weighted Average					age	
	0.139 68.81% Pervious Area					us Area	
0.063			31.1	9% Imper	/ious Area		
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 13

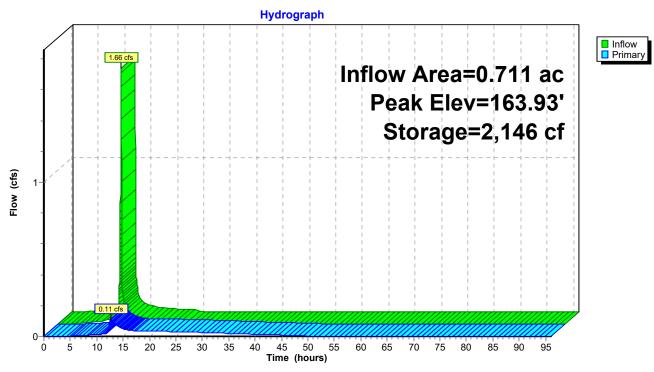
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area =	0.711 ac, 50.91% Impervious, Inflow [Depth = 1.48" for 2-YR event
Inflow =	1.66 cfs @ 11.96 hrs, Volume=	0.088 af
Outflow =	0.11 cfs @ 12.67 hrs, Volume=	0.088 af, Atten= 94%, Lag= 42.5 min
Primary =	0.11 cfs @ 12.67 hrs, Volume=	0.088 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 163.93' @ 12.67 hrs Surf.Area= 1,110 sf Storage= 2,146 cf

Plug-Flow detention time= 642.3 min calculated for 0.088 af (100% of inflow) Center-of-Mass det. time= 641.7 min (1,421.2 - 779.5)

Volume	Invert	Avail.Stor	rage Storage Description
#1	162.00'	6,38	33 cf 18.50'W x 60.00'L x 5.75'H Prismatoid
.			
Device	Routing	Invert	Outlet Devices
#1	Primary	162.00'	12.0" Round Culvert
			L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
Primary	OutFlow Max	x=0.11 cfs @	$_{\odot}$ 12.67 hrs HW=163.93' TW=0.00' (Dynamic Tailwater)

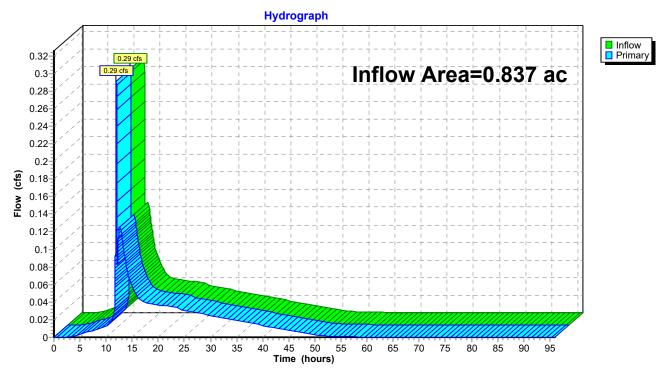

1=Culvert (Passes 0.11 cfs of 4.53 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.04 cfs @ 6.62 fps)

-3=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.46 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	iydro\
20483-hydro	Type II 24-hr 2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC	Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	_C Page 14

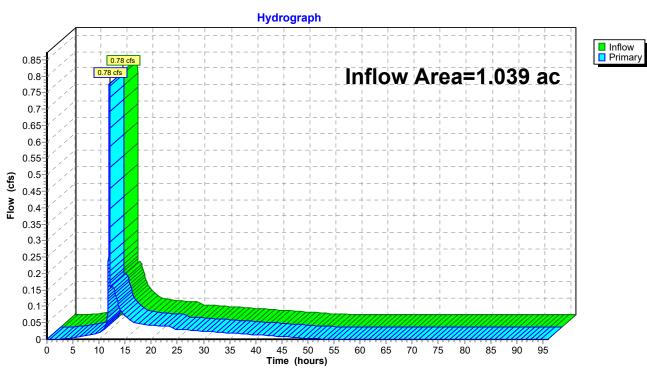


Pond 1P: 48,000 GAL Tank

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Are	a =	0.837 ac, 45.64% Impervious, Inflow Depth > 1.44" for 2-YR event	
Inflow	=	0.29 cfs @ 11.96 hrs, Volume= 0.100 af	
Primary	=	0.29 cfs @ 11.97 hrs, Volume= 0.100 af, Atten= 0%, Lag= 0.6 min	

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

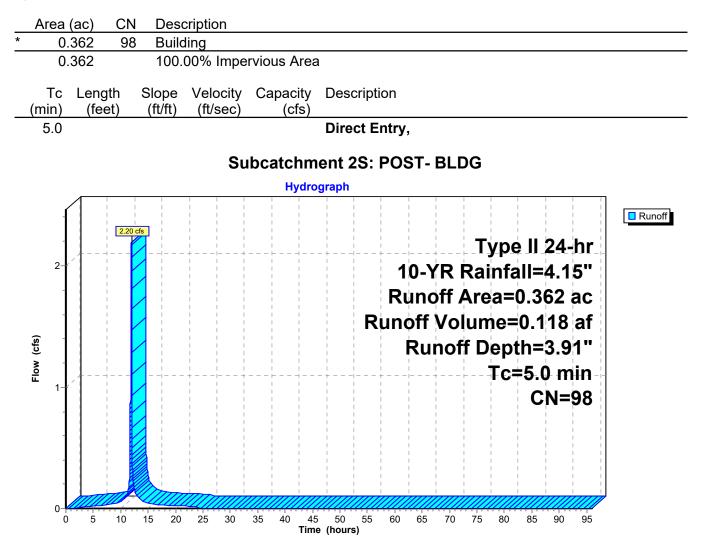

Link 2L: TOTAL POST (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\h	ydro\	
20483-hydro	Type II 24-hr	2-YR Rainfall=2.62"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LL	.C	Page 16

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 1.43" for 2-YR event
Inflow	=	0.78 cfs @ 11.97 hrs, Volume= 0.124 af
Primary	=	0.78 cfs @ 11.98 hrs, Volume= 0.124 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 4L: TOTAL POST

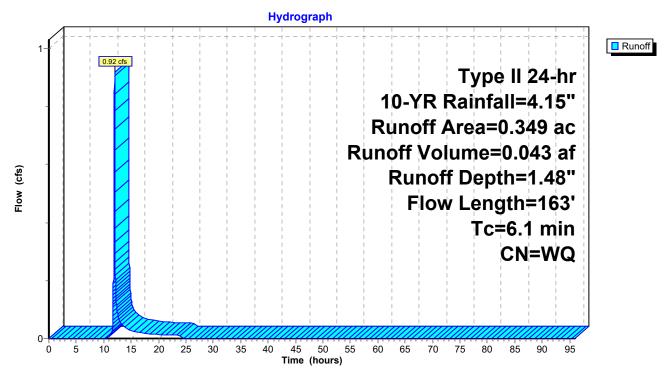
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments	\hydro\	
20483-hydro	Type II 24-hr	10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC	Page 17

Summary for Subcatchment 2S: POST- BLDG

Runoff = 2.20 cfs @ 11.96 hrs, Volume= 0.118 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

Summary for Subcatchment 3S: POST-Pervious To Tank

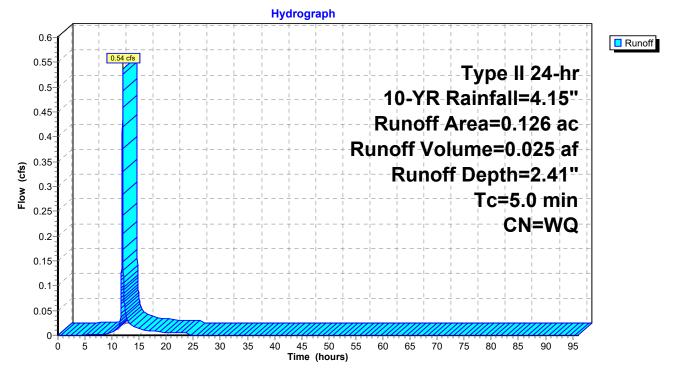

Runoff = 0.92 cfs @ 11.98 hrs, Volume= 0.043 af, Depth= 1.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

_	Area	(ac) C	N Des	cription		
	0.	283 7	'0 Woo	ds, Good,	HSG C	
_	0.	066 7	′4 >75°	% Grass c	over, Good	, HSG C
	0.	349	Weig	ghted Aver	age	
	0.	349	100.	00% Pervi	ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	60	0.2500	0.17		Sheet Flow, AB
						Woods: Light underbrush n= 0.400 P2= 2.62"
	0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC
						Woodland Kv= 5.0 fps
	0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD
						Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'
_						n= 0.022 Earth, clean & straight
	61	163	Total			

6.1 163 Total

Subcatchment 3S: POST-Pervious To Tank

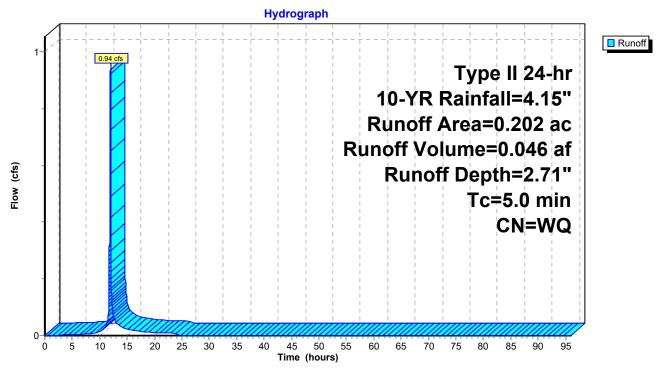

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 0.54 cfs @ 11.96 hrs, Volume= 0.025 af, Depth= 2.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

	Area	(ac)	CN	Desc	ription		
*	0.	020	98	Impe	rvious		
	0.	010	74	>75%	6 Grass co	over, Good	d, HSG C
	0.	096	80	>75%	6 Grass co	over, Good	d, HSG D
	0.	126		Weig	hted Aver	age	
	0.	106		84.13	3% Pervio	us Area	
	0.	020		15.87	7% Imper∖	vious Area	
	Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0		/	<u> </u>		()	Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 0.94 cfs @ 11.96 hrs, Volume= 0.046 af, Depth= 2.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

_	Area	(ac)	CN	Desc	cription		
*	0.	063	98	Impe	ervious		
_	0.	139	80	>759	% Grass co	over, Good	, HSG D
	0.	202		Weig	ghted Aver	age	
	0.	139		68.8	1% Pervio	us Area	
	0.	063		31.1	9% Imperv	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 21

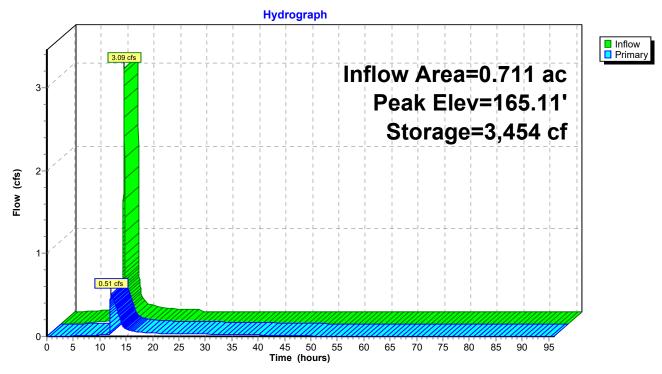
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area =	0.711 ac, 50.91% Impervious, Inflow De	epth = 2.72" for 10-YR event
Inflow =	3.09 cfs @ 11.96 hrs, Volume=	0.161 af
Outflow =	0.51 cfs @ 12.15 hrs, Volume=	0.161 af, Atten= 84%, Lag= 11.5 min
Primary =	0.51 cfs @ 12.15 hrs, Volume=	0.161 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 165.11' @ 12.15 hrs Surf.Area= 1,110 sf Storage= 3,454 cf

Plug-Flow detention time= 425.2 min calculated for 0.161 af (100% of inflow) Center-of-Mass det. time= 425.1 min (1,199.8 - 774.7)

Volume	Invert	Avail.Stor	rage Storage Description
#1	162.00'	6,38	B3 cf 18.50'W x 60.00'L x 5.75'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Primary	162.00'	12.0" Round Culvert
			L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
· · ·			@ 12.15 hrs HW=165.11' TW=0.00' (Dynamic Tailwater)

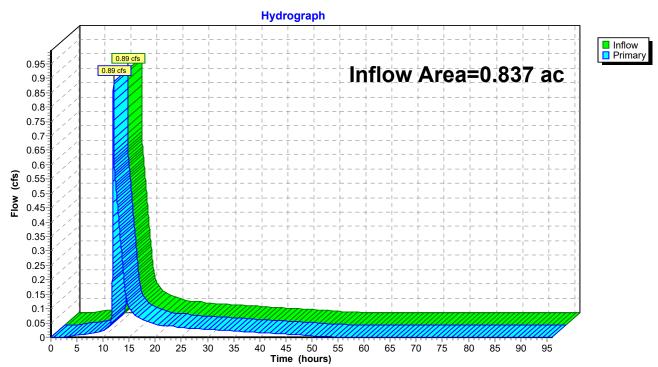

-1=Culvert (Passes 0.51 cfs of 6.11 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.05 cfs @ 8.44 fps)

-3=Orifice/Grate (Orifice Controls 0.46 cfs @ 5.26 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 22

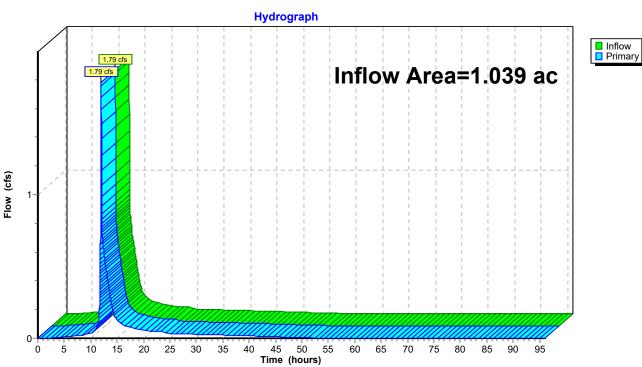

Pond 1P: 48,000 GAL Tank

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments	\hydro\	
20483-hydro	Type II 24-hr	10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC	Page 23

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Are	a =	0.837 ac, 45.64% Impervious, Inflow Depth = 2.67" for 10-YR event
Inflow	=	0.89 cfs @ 11.98 hrs, Volume= 0.186 af
Primary	=	0.89 cfs @ 11.99 hrs, Volume= 0.186 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

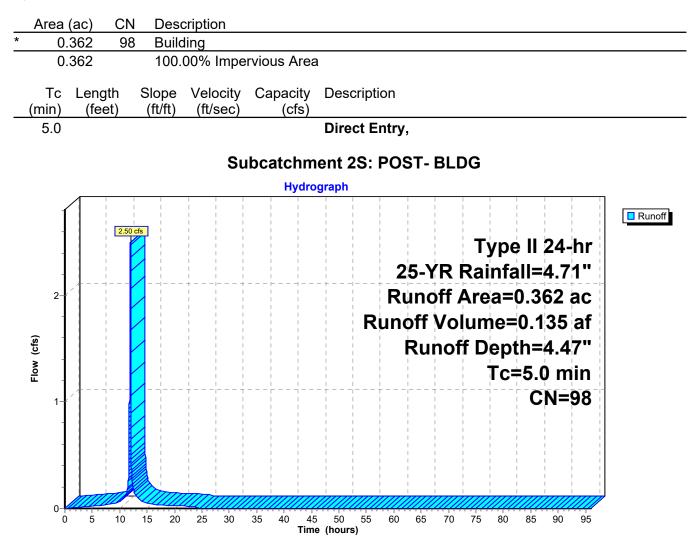

Link 2L: TOTAL POST (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments	\hydro\	
20483-hydro	Ťype II 24-hr	10-YR Rainfall=4.15"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC	Page 24

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 2.68" for 10-YR event
Inflow	=	1.79 cfs @ 11.97 hrs, Volume= 0.232 af
Primary	=	1.79 cfs $\hat{@}$ 11.98 hrs, Volume= 0.232 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 4L: TOTAL POST

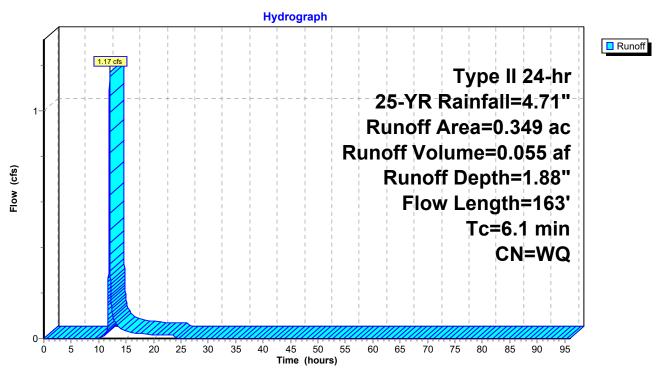
S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments	\hydro\
20483-hydro	Type II 24-hr 25-YR Rainfall=4.71"
Prepared by Engineering Ventures, PC	Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC Page 25

Summary for Subcatchment 2S: POST- BLDG

Runoff = 2.50 cfs @ 11.96 hrs, Volume= 0.135 af, Depth= 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

Summary for Subcatchment 3S: POST-Pervious To Tank

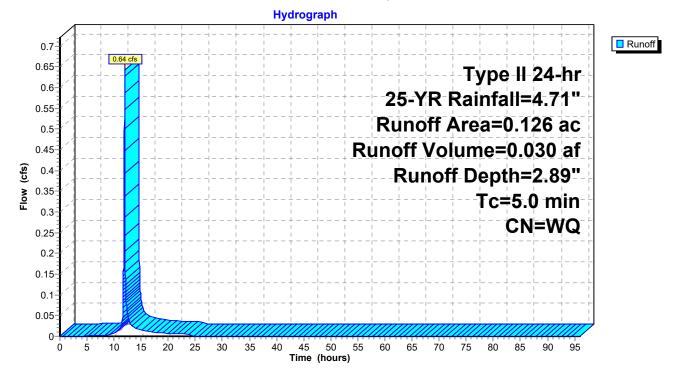

Runoff = 1.17 cfs @ 11.98 hrs, Volume= 0.055 af, Depth= 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

	Area	(ac) C	N Des	cription		
	0.	283 7	70 Woo	ds, Good,	HSG C	
	0.	066 7	74 >75°	% Grass c	over, Good	, HSG C
	0.	349	Weig	ghted Aver	age	
	0.	349	100.	00% Pervi	ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	60	0.2500	0.17		Sheet Flow, AB
						Woods: Light underbrush n= 0.400 P2= 2.62"
	0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC
						Woodland Kv= 5.0 fps
	0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD
						Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'
_						n= 0.022 Earth, clean & straight
	61	160	Total			

6.1 163 Total

Subcatchment 3S: POST-Pervious To Tank

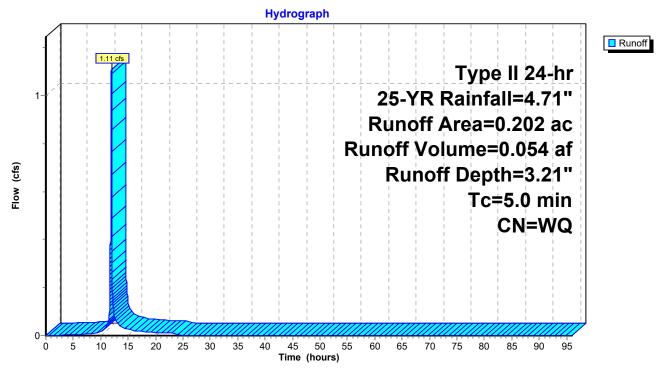

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 0.64 cfs @ 11.96 hrs, Volume= 0.030 af, Depth= 2.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

	Area	(ac)	CN	Desc	ription		
*	0.	020	98	Impe	rvious		
	0.	010	74	>75%	6 Grass co	over, Good	I, HSG C
	0.	096	80	>75%	6 Grass co	over, Good	I, HSG D
	0.	126		Weig	hted Aver	age	
	0.	106			3% Pervio		
	0.	020		15.87	7% Imper	ious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 1.11 cfs @ 11.96 hrs, Volume= 0.054 af, Depth= 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-YR Rainfall=4.71"

	Area	(ac)	CN	Desc	cription		
*	0.	063	98	Impe	ervious		
	0.	139	80	>75%	% Grass co	over, Good	I, HSG D
	0.	202		Weig	ghted Aver	age	
	0.	139		68.8	1% Pervio	us Area	
	0.	063		31.1	9% Imperv	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 25-YR Rainfall=4.71"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 29

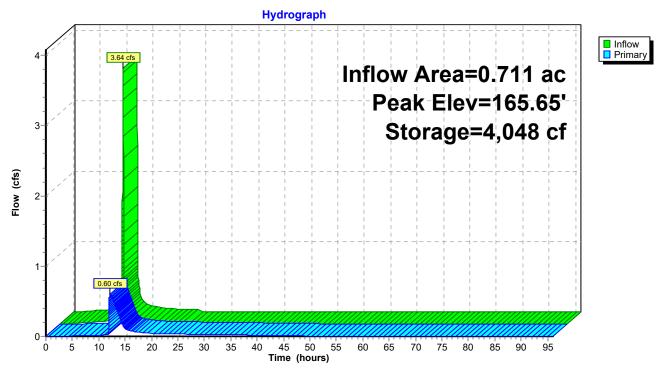
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area =	0.711 ac, 50.91% Impervious, Inflow Depth =	3.20" for 25-YR event
Inflow =	3.64 cfs @ 11.96 hrs, Volume= 0.190	af
Outflow =	0.60 cfs @ 12.15 hrs, Volume= 0.190	af, Atten= 83%, Lag= 11.3 min
Primary =	0.60 cfs @ 12.15 hrs, Volume= 0.190	af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 165.65' @ 12.15 hrs Surf.Area= 1,110 sf Storage= 4,048 cf

Plug-Flow detention time= 380.3 min calculated for 0.190 af (100% of inflow) Center-of-Mass det. time= 379.8 min (1,153.1 - 773.3)

Volume	Invert	Avail.Sto	rage Storage Description
#1	162.00'	6,38	83 cf 18.50'W x 60.00'L x 5.75'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Primary	162.00'	12.0" Round Culvert
	-		L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
Primary	OutFlow Max	x=0.60 cfs (@ 12.15 hrs HW=165.65' TW=0.00' (Dynamic Tailwater)

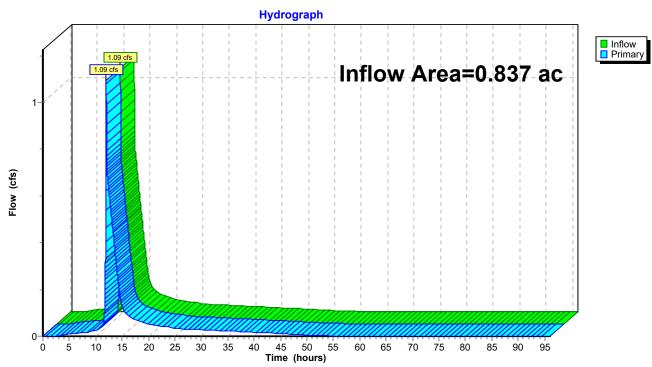

-1=Culvert (Passes 0.60 cfs of 6.71 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.05 cfs @ 9.14 fps)

-3=Orifice/Grate (Orifice Controls 0.55 cfs @ 6.33 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 25-YR Rainfall=4.71"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 30

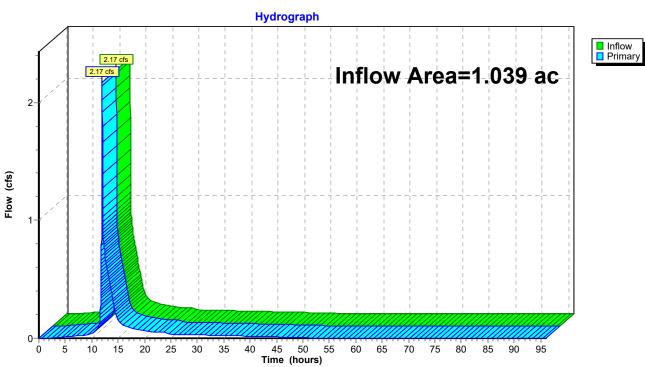

Pond 1P: 48,000 GAL Tank

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr 25-YR Rainfall=4.71"				
Prepared by Engineering Ventures, PC	Printed 2/11/2021				
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC Page 31				

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Are	a =	0.837 ac, 45.64% Impervious, Inflow Depth = 3.15" for 25-YR event
Inflow	=	1.09 cfs @ 11.98 hrs, Volume= 0.220 af
Primary	=	1.09 cfs $\hat{@}$ 11.99 hrs, Volume= 0.220 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

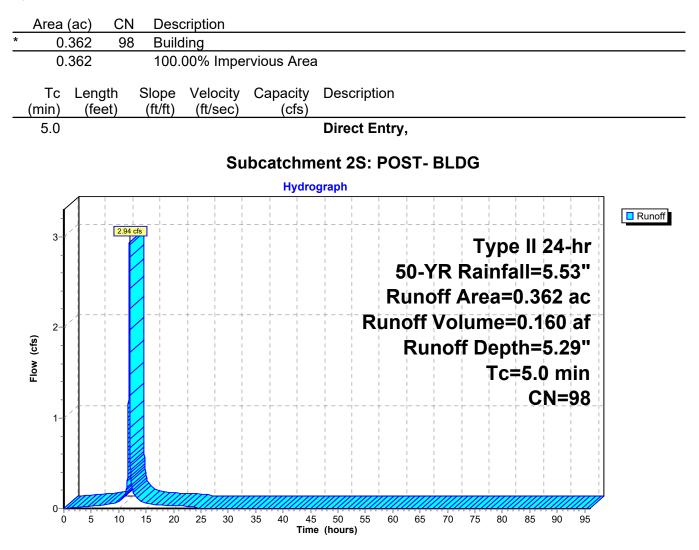

Link 2L: TOTAL POST (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\				
20483-hydro	Ťype II 24-hr	25-YR Rainfall=4.71"		
Prepared by Engineering Ventures, PC		Printed 2/11/2021		
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC	Page 32		

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 3.16" for 25-YR event
Inflow	=	2.17 cfs @ 11.97 hrs, Volume= 0.274 af
Primary	=	2.17 cfs @ 11.98 hrs, Volume= 0.274 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs



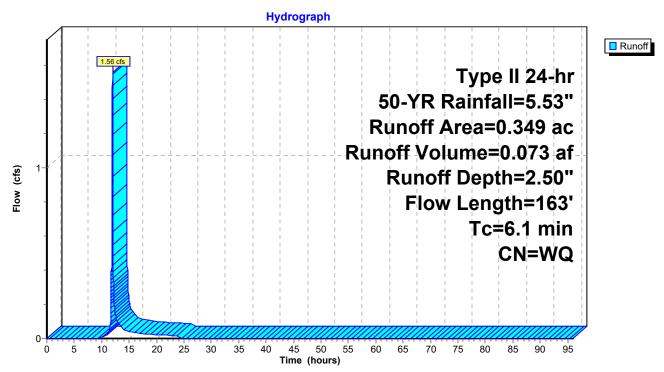
Link 4L: TOTAL POST

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr 50-YR Rainfall=5.53"				
Prepared by Engineering Ventures, PC	Printed 2/11/2021				
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	LLC Page 33				

Runoff = 2.94 cfs @ 11.96 hrs, Volume= 0.160 af, Depth= 5.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

Summary for Subcatchment 3S: POST-Pervious To Tank

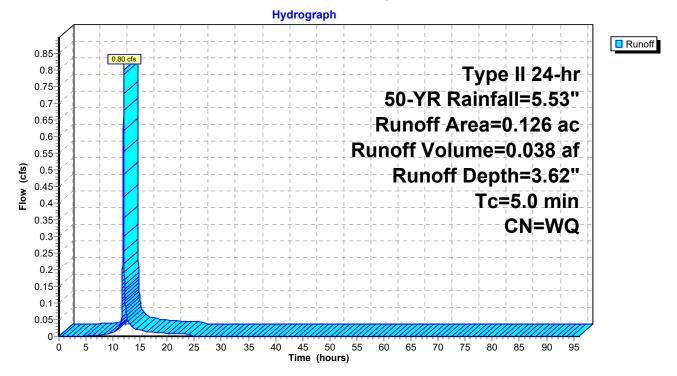

Runoff = 1.56 cfs @ 11.98 hrs, Volume= 0.073 af, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

_	Area	(ac) C	N Des	cription		
	0.	283 7	'0 Woo	ds, Good,	HSG C	
	0.	066 7	'4 >75°	% Grass c	over, Good	, HSG C
_	0.	349	Weig	ghted Aver	age	
	0.	349	100.	00% Pervi	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	60	0.2500	0.17		Sheet Flow, AB
						Woods: Light underbrush n= 0.400 P2= 2.62"
	0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC
						Woodland Kv= 5.0 fps
	0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD
						Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'
_						n= 0.022 Earth, clean & straight
	61	160	Total			

6.1 163 Total

Subcatchment 3S: POST-Pervious To Tank

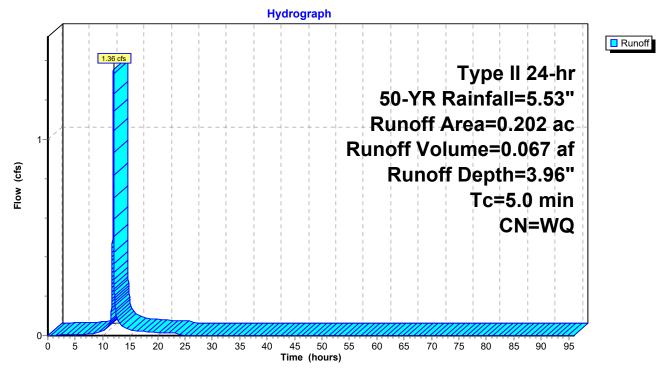

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 0.80 cfs @ 11.96 hrs, Volume= 0.038 af, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

	Area	(ac)	CN	Desc	ription		
*	0.	020	98	Impe	rvious		
	0.	010	74	>75%	6 Grass co	over, Good	I, HSG C
	0.	096	80	>75%	6 Grass co	over, Good	I, HSG D
	0.	126		Weig	hted Aver	age	
	0.	106			3% Pervio		
	0.	020		15.87	7% Imper	ious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 1.36 cfs @ 11.96 hrs, Volume= 0.067 af, Depth= 3.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

	5.0						Direct Entry,
		(100		(iuit)	(10300)	(013)	
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
	Тс	Leng	th S	Slope	Velocity	Capacity	Description
	0.	063		31.1	9% Imperv	/ious Area	
0.139 68.81% Pervious Area					1% Pervio	us Area	
	-	202		Weig	phted Aver	age	
	0.	139	80	>75%	6 Grass c	over, Good	I, HSG D
*	0.	063	98	Impe	ervious		
	Area	(ac)	CN	Desc	cription		

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 50-YR Rainfall=5.53"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 37

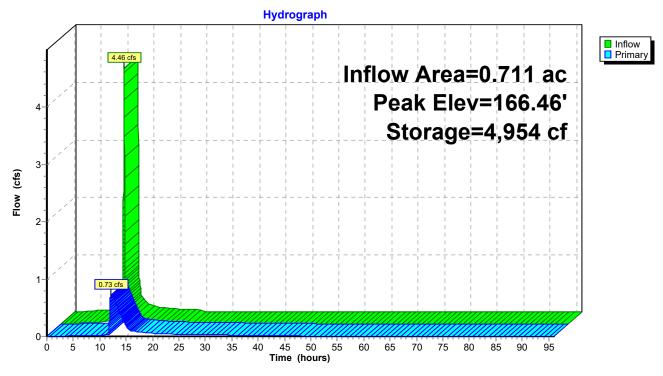
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area =	0.711 ac, 50.91% Impervious, Inflow D	Depth = 3.92" for 50-YR event
Inflow =	4.46 cfs @ 11.96 hrs, Volume=	0.233 af
Outflow =	0.73 cfs @ 12.15 hrs, Volume=	0.232 af, Atten= 84%, Lag= 11.5 min
Primary =	0.73 cfs @ 12.15 hrs, Volume=	0.232 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 166.46' @ 12.15 hrs Surf.Area= 1,110 sf Storage= 4,954 cf

Plug-Flow detention time= 330.7 min calculated for 0.232 af (100% of inflow) Center-of-Mass det. time= 330.3 min (1,101.7 - 771.3)

Volume	Invert	Avail.Stor	age Storage Description	
#1	162.00'	6,38	3 cf 18.50'W x 60.00'L x 5.75'H Prismatoid	
Device	Routing	Invert	Outlet Devices	
#1	Primary	162.00'	12.0" Round Culvert	
	·		L= 6.0' CPP, square edge headwall, Ke= 0.500	
	Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900			
			n= 0.012, Flow Area= 0.79 sf	
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
Primary	OutFlow Max	x=0.73 cfs @	2 12.15 hrs HW=166.46' TW=0.00' (Dynamic Tailwater)	

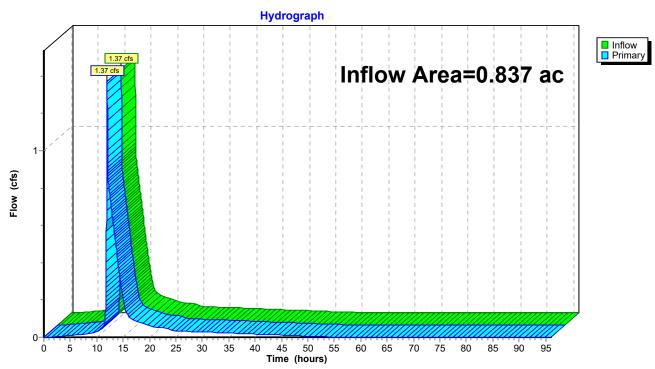

-1=Culvert (Passes 0.73 cfs of 7.53 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.06 cfs @ 10.12 fps)

-3=Orifice/Grate (Orifice Controls 0.67 cfs @ 7.68 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 50-YR Rainfall=5.53"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 38

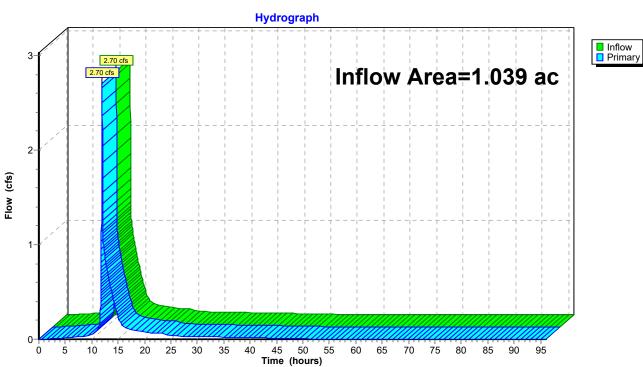


Pond 1P: 48,000 GAL Tank

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Are	a =	0.837 ac, 45.64% Impervious, Inflow Depth = 3.88" for 50-YR event
Inflow	=	1.37 cfs @ 11.97 hrs, Volume= 0.270 af
Primary	=	1.37 cfs $\overline{@}$ 11.98 hrs, Volume= 0.270 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

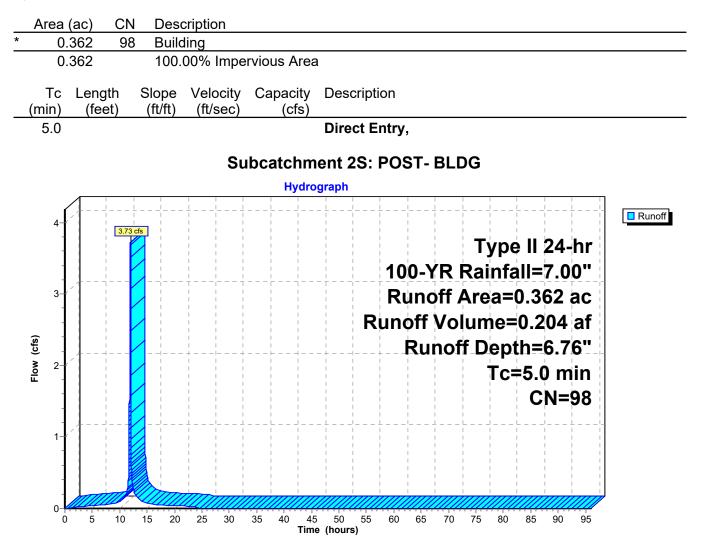

Link 2L: TOTAL POST (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr	50-YR Rainfall=5.53"			
Prepared by Engineering Ventures, PC		Printed 2/11/2021			
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions I	LC	Page 40			

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 3.89" for 50-YR event
Inflow	=	2.70 cfs @ 11.97 hrs, Volume= 0.337 af
Primary	=	2.70 cfs @ 11.98 hrs, Volume= 0.337 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs



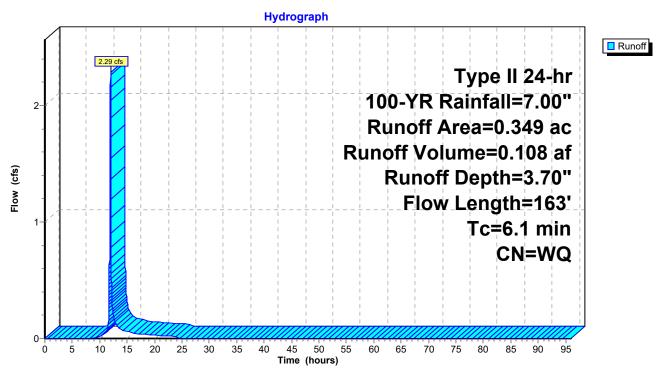
Link 4L: TOTAL POST

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartment	ts\hydro\	
20483-hydro	Type II 24-hr	100-YR Rainfall=7.00"
Prepared by Engineering Ventures, PC		Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	s LLC	Page 41

Runoff = 3.73 cfs @ 11.96 hrs, Volume= 0.204 af, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

Summary for Subcatchment 3S: POST-Pervious To Tank

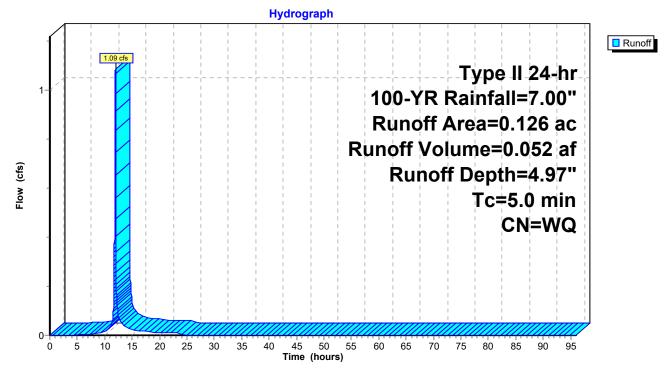

Runoff = 2.29 cfs @ 11.97 hrs, Volume= 0.108 af, Depth= 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

_	Area	(ac) C	N Des	cription		
	0.	283 7	'0 Woo	ds, Good,	HSG C	
	0.	066 7	'4 >75°	% Grass c	over, Good	, HSG C
_	0.	349	Weig	ghted Aver	age	
	0.	349	100.	00% Pervi	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.7	60	0.2500	0.17		Sheet Flow, AB
						Woods: Light underbrush n= 0.400 P2= 2.62"
	0.2	28	0.2500	2.50		Shallow Concentrated Flow, BC
						Woodland Kv= 5.0 fps
	0.2	75	0.0100	6.06	59.04	Trap/Vee/Rect Channel Flow, CD
						Bot.W=2.00' D=1.50' Z= 3.0 '/' Top.W=11.00'
_						n= 0.022 Earth, clean & straight
	61	160	Total			

6.1 163 Total

Subcatchment 3S: POST-Pervious To Tank

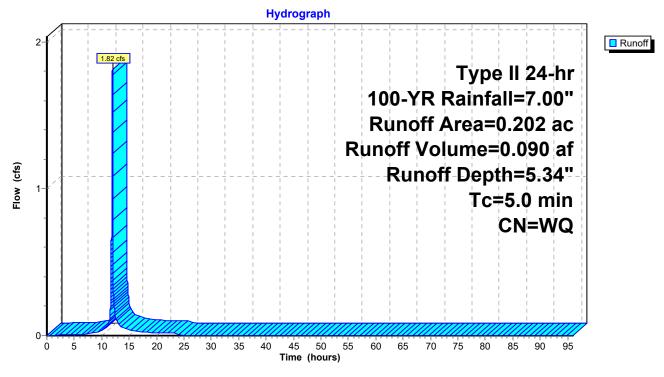

Summary for Subcatchment 4S: POST Bypass (ON-SITE)

Runoff = 1.09 cfs @ 11.96 hrs, Volume= 0.052 af, Depth= 4.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

	Area	(ac)	CN	Desc	ription		
*	0.	020	98	Impe	ervious		
	0.	010	74	>75%	6 Grass co	over, Good	d, HSG C
	0.	096	80	>75%	6 Grass co	over, Good	d, HSG D
	0.	126		Weig	hted Aver	age	
	0.	106		84.1	3% Pervio	us Area	
	0.	020		15.8	7% Imper	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 4S: POST Bypass (ON-SITE)


Summary for Subcatchment 6S: POST-DEV (OFFSITE)

Runoff = 1.82 cfs @ 11.96 hrs, Volume= 0.090 af, Depth= 5.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

	Area	(ac)	CN	Desc	cription		
*	0.	063	98	Impe	ervious		
	0.	139	80	>75%	% Grass co	over, Good	, HSG D
	0.	202		Weig	ghted Aver	age	
	0.	139		68.8	1% Pervio	us Area	
	0.	063		31.1	9% Imperv	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,

Subcatchment 6S: POST-DEV (OFFSITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 100-YR Rainfall=7.00"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 45

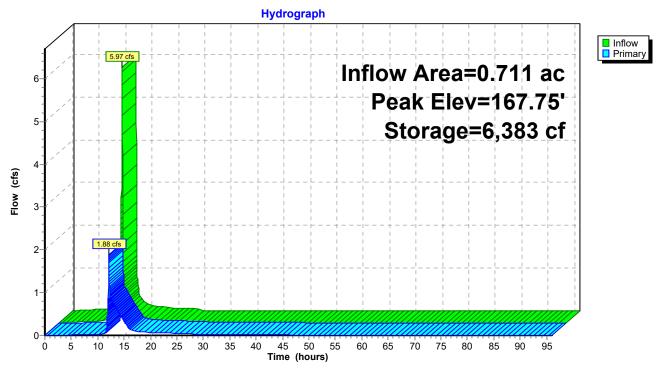
Summary for Pond 1P: 48,000 GAL Tank

Inflow Area =	0.711 ac, 50.91% Impervious, Inflow Depth = 5.26" for 100-YR event	
Inflow =	5.97 cfs @ 11.96 hrs, Volume= 0.312 af	
Outflow =	1.88 cfs @ 12.08 hrs, Volume= 0.311 af, Atten= 69%, Lag= 7.3 min	
Primary =	1.88 cfs @ 12.08 hrs, Volume= 0.311 af	

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 167.75' @ 12.08 hrs Surf.Area= 1,110 sf Storage= 6,383 cf

Plug-Flow detention time= 271.5 min calculated for 0.311 af (100% of inflow) Center-of-Mass det. time= 271.2 min (1,039.5 - 768.3)

Volume	Invert	Avail.Sto	rage Storage Description
#1	162.00'	6,38	83 cf 18.50'W x 60.00'L x 5.75'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Primary	162.00'	12.0" Round Culvert
	-		L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 162.00' / 161.90' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	162.00'	1.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	163.75'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	167.40'	8.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
Primary	OutFlow Max	x=1.88 cfs (@ 12.08 hrs HW=167.75' TW=0.00' (Dynamic Tailwater)

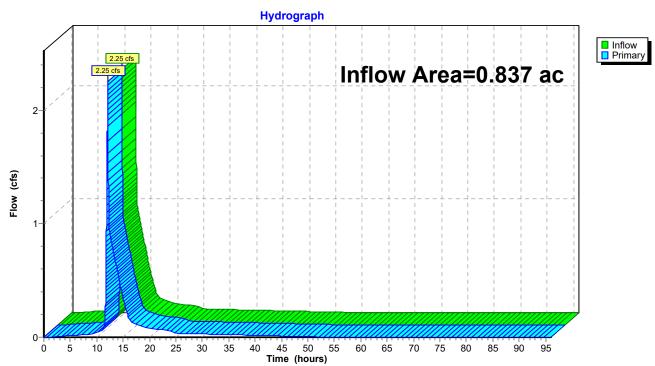

-1=Culvert (Passes 1.88 cfs of 8.66 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.06 cfs @ 11.50 fps)

-3=Orifice/Grate (Orifice Controls 0.82 cfs @ 9.43 fps)

-4=Orifice/Grate (Orifice Controls 0.99 cfs @ 2.85 fps)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\
20483-hydro Type II 24-hr 100-YR Rainfall=7.00"
Prepared by Engineering Ventures, PC Printed 2/11/2021
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Page 46

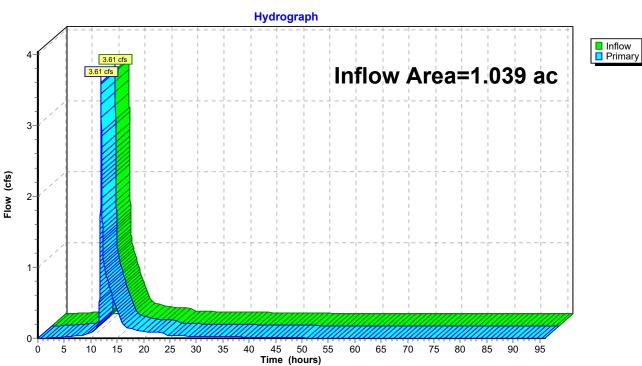

Pond 1P: 48,000 GAL Tank

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr	100-YR Rainfall=7.00"			
Prepared by Engineering Ventures, PC		Printed 2/11/2021			
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	s LLC	Page 47			

Summary for Link 2L: TOTAL POST (ON-SITE)

Inflow Are	a =	0.837 ac, 45.64% Impervious, Inflow Depth = 5.21" for 100-YR event
Inflow	=	2.25 cfs @ 12.05 hrs, Volume= 0.364 af
Primary	=	2.25 cfs @ 12.06 hrs, Volume= 0.364 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

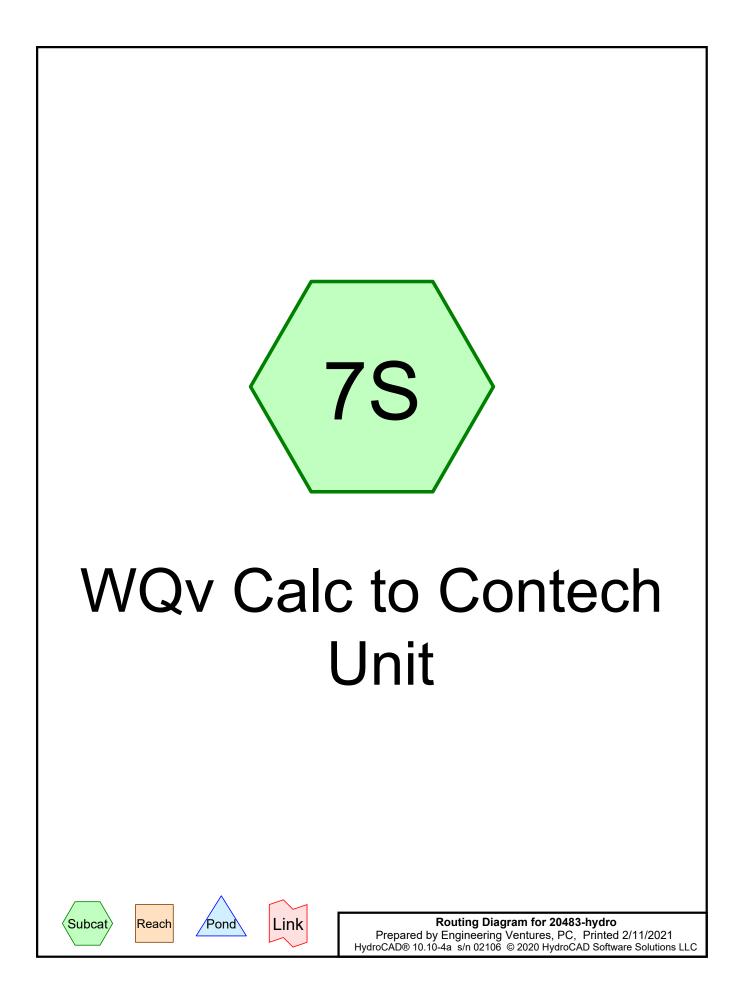

Link 2L: TOTAL POST (ON-SITE)

S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartments\hydro\					
20483-hydro	Type II 24-hr	100-YR Rainfall=7.00"			
Prepared by Engineering Ventures, PC		Printed 2/11/2021			
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	S LLC	Page 48			

Summary for Link 4L: TOTAL POST

Inflow Are	a =	1.039 ac, 42.83% Impervious, Inflow Depth = 5.24" for 100-YR event
Inflow	=	3.61 cfs @ 11.97 hrs, Volume= 0.453 af
Primary	=	3.61 cfs @ 11.98 hrs, Volume= 0.453 af, Atten= 0%, Lag= 0.6 min

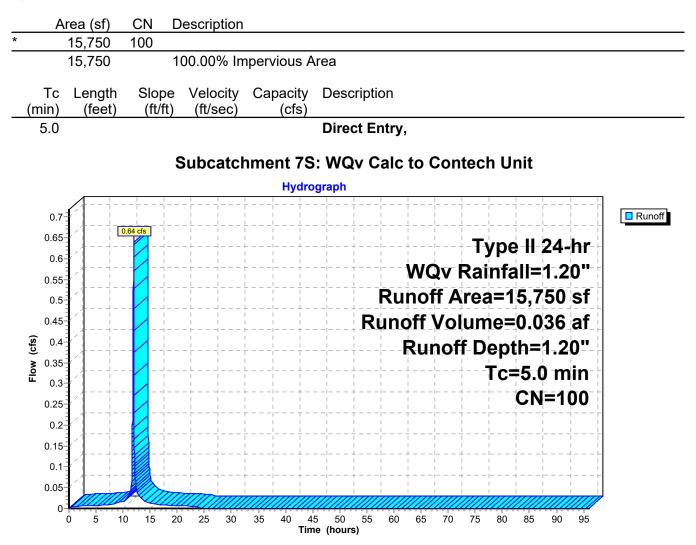
Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

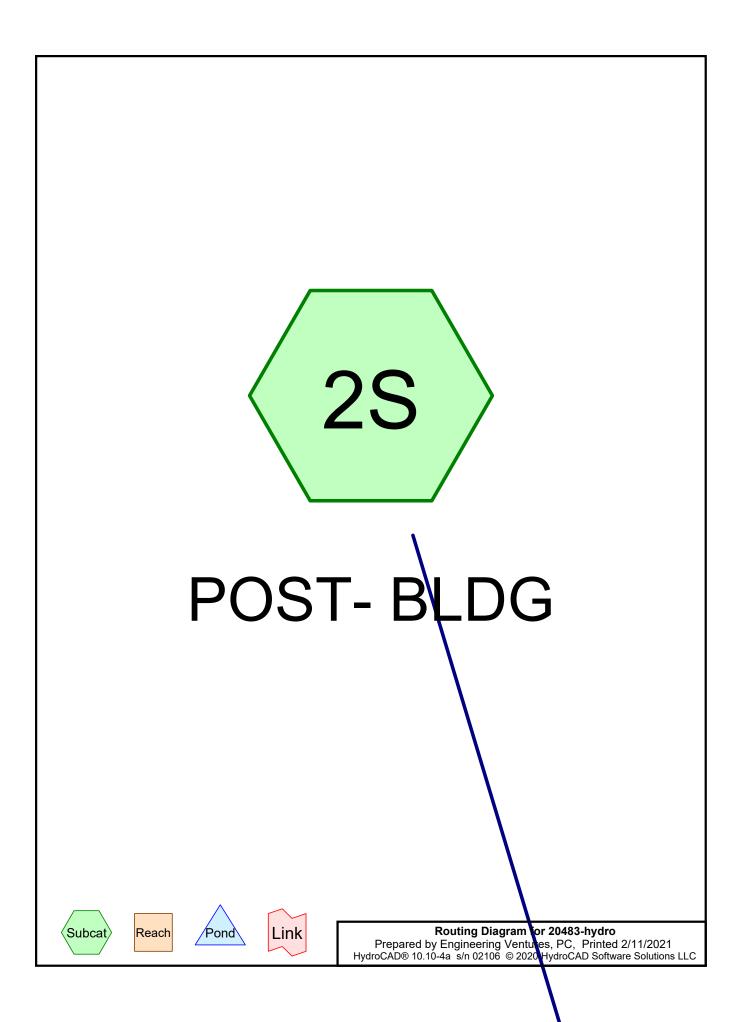


Link 4L: TOTAL POST

<u>Part 6:</u>

Water Quality (WQv) and Individual SMP Calculations

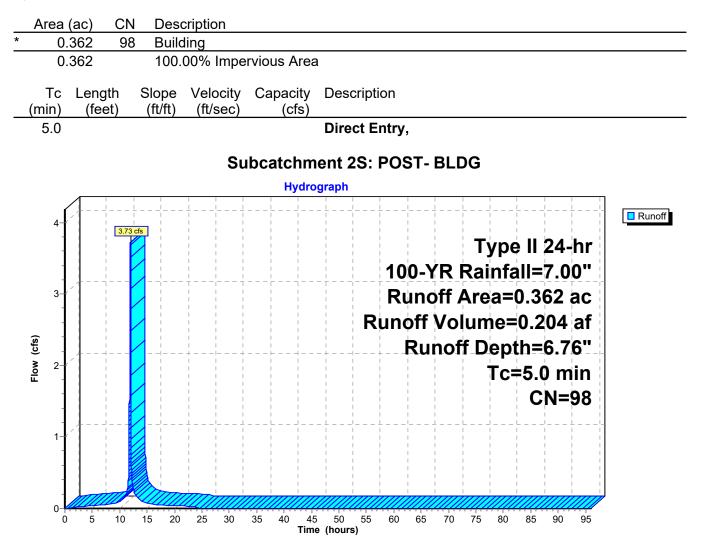

2048 JOB ENGINEERING 1 OF _ SHEET NO. DATE 2/11/202 moo CALCULATED BY CHECKED BY DATE Mechanic Street, Suite E2-3 Lebanon, NH 03766 T: 603-442-9333 F: 603-442-9331 B Flynn Avenue, Suite Burlington, VT 0540 T: 802-863-6225 F: 802-863-6306 SCALE WATER QUALITY PEAK FLOW CALC Way FROM ROOF = 1,498 CF P= 1.2" Q(in) = WQ1 1,498 CF = 0.095 = 1.14" RUNOF DRAWAGE MOD. CN= 1000/[10+5P+10Q-10(Q+125QP)/2] = $1000/[10+5(12)+10(1.14)-10(1.14^2+1.25(1.4)(1.2))$ = 99.48 => USE (N=100 B RER HYDROCAD, DURING WON STORM EVENT, FLOW = 0.64 CFS TREATMENT CAPDELITY OF CDS 2015-4-C = 0.7 CFS CHECK OVER FLOW FROM HYDRO CAD, 100-TR FLOW = 3,73 CFS · BYPASS CAPACITY OF CDS 2015-4-C=10 CFS



Summary for Subcatchment 7S: WQv Calc to Contech Unit

Runoff = 0.64 cfs @ 11.96 hrs, Volume= 0.036 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=1.20"



S:\PROJECTS\0-2020\20483 NYCR Hackett Boulevard Apartment	ts\hydro\	
20483-hydro	Type II 24-hr 100-YR Rainfall=7.00"	
Prepared by Engineering Ventures, PC	Printed 2/11/2021	
HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions	s LLC Page 2	

Runoff = 3.73 cfs @ 11.96 hrs, Volume= 0.204 af, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

SECTION [____] STORM WATER TREATMENT DEVICE

PART 1 – GENERAL

1.1 DESCRIPTION

A. Scope

The Contractor shall furnish all labor, equipment and materials necessary to install the storm water treatment device(s) (SWTD) and appurtenances specified in the Drawings and these specifications.

B. Related Sections

Section 02240:	Dewatering
Section 02260:	Excavation Support and Protection
Section 02315:	Excavation and Fill
Section 02340:	Soil Stabilization

1.2 QUALITY ASSURANCES

A. Inspection

All components shall be subject to inspection by the engineer at the place of manufacture and/or installation. All components are subject to rejected or identified for repair if the quality of materials and manufacturing do not comply with the requirements of this specification. Components which have been identified as defective may be subject for repair where final acceptance of the component is contingent on the discretion of the Engineer.

B. Warranty

The manufacturer shall guarantee the SWTD components against all manufacturer originated defects in materials or workmanship for a period of twelve (12) months from the date the components are delivered to the owner for installation. The manufacturer shall upon its determination repair, correct or replace any manufacturer originated defects advised in writing to the manufacturer within the referenced warranty period. The use of SWTD components shall be limited to the application for which it was specifically designed.

C. Manufacturer's Performance Certificate

The SWTD manufacturer shall submit to the Engineer of Record a "Manufacturer's Performance Certification" certifying that each SWTD is capable of achieving the specified removal efficiencies listed in these specifications. The certification shall be supported by independent third-party research.

1.3 SUBMITTALS

A. Shop Drawings

The contractor shall prepare and submit shop drawings in accordance with Section [_____] of the contract documents. The shop drawings shall detail horizontal and vertical dimensioning, reinforcement and joint type and locations.

PART 2.0 – PRODUCTS

2.1 MATERIALS AND DESIGN

- A. Precast concrete components shall conform to applicable sections of ASTM C 478, ASTM C 857 and ASTM C 858 and the following:
 - 1. Concrete shall achieve a minimum 28-day compressive strength of 4,000 pounds per square-inch (psi);
 - 2. Unless otherwise noted, the precast concrete sections shall be designed to withstand lateral earth and AASHTO H-20 traffic loads;
 - 3. Cement shall be Type III Portland Cement conforming to ASTM C 150;
 - 4. Aggregates shall conform to ASTM C 33;
 - 5. Reinforcing steel shall be deformed billet-steel bars, welded steel wire or deformed welded steel wire conforming to ASTM A 615, A 185, or A 497.
 - 6. Joints shall be sealed with preformed joint sealing compound conforming to ASTM C 990.
 - 7. Shipping of components shall not be initiated until a minimum compressive strength of 4,000 psi is attained or five (5) calendar days after fabrication has expired, whichever occurs first.
- B. Internal Components and appurtenances shall conform to the following:
 - 1. Screen and support structure shall be manufactured of Type 316 and 316L stainless steel conforming to ASTM F 1267-01;
 - 2. Hardware shall be manufactured of Type 316 stainless steel conforming to ASTM A 320;
 - 3. Fiberglass components shall conform to the National Bureau of Standards PS-15 and coated with an isophalic polyester gelcoat;
 - 4. Access system(s) conform to the following:
 - a. Manhole castings shall be designed to withstand AASHTO H-20 loadings and manufactured of cast-iron conforming to ASTM A 48 Class 30.

A. REMOVAL EFFICIENCIES

- 1. The SWTD shall be capable of achieving an 80 percent average annual reduction for a particle distribution having a mean particle size (d_{50}) of 125 microns
- 2. The SWTD shall be capable of capturing and retaining 100 percent of pollutants greater than or equal to 3/16 of an inch regardless of the pollutant's specific gravity (i.e.: floatable and neutrally buoyant materials) for flows up to the device's rated-treatment capacity. The SWTD shall be designed to retain all previously captured pollutants addressed by this subsection under all flow conditions.
- 3. The SWTD shall be capable of capturing and retaining total petroleum hydrocarbons. The SWTD shall be capable of achieving a removal efficiency of 92 and 78 percent when the device is operating at 25 and 50 percent of its rated-treatment capacity. These removal efficiencies shall be based on independent third-party research for influent oil concentrations representative of storm water runoff ($20 \pm 5 \text{ mg/L}$). The SWTD shall be greater than 99 percent effective in controlling dry-weather accidental oil spills.

B. HYDRAULIC CAPACITY

- 1. The SWTD shall provide a rated-treatment capacity in accordance with Table 1. At this rated-treatment capacity, the device shall be capable of achieving an 80 percent removal efficiency for a particle distribution having a mean particle size (d_{50}) of 125 microns. This removal efficiency shall be supported by independent third-party research.
- 2. The SWTD shall maintain the peak conveyance capacity of the drainage network as defined by the Engineer.
- C. STORAGE CAPACITY
 - 1. The SWTD shall be designed with a sump chamber for the storage of captured sediments and other negatively buoyant pollutants in between maintenance cycles. The minimum storage capacity provided by the sump chamber shall be in accordance with the volume listed in Table 1. The boundaries of the sump chamber shall be limited to that which do not degrade the SWTD's treatment efficiency as captured pollutants accumulate. The sump chamber shall be separate from the treatment processing portion(s) of the SWTD to minimize the probability of fine particle resuspension. In order to not restrict the Owner's ability to maintain the SWTD, the minimum dimension providing access from the ground surface to the sump chamber shall be 20 inches in diameter.
 - 2. The SWTD shall be designed to capture and retain Total Petroleum Hydrocarbons generated by wet-weather flow and dry-weather gross spills.

The minimum storage capacity provided by the SWTD shall be in accordance with the volume listed in Table 1.

2.3 MANUFACTURER

The manufacturer of the SWTD shall be one that is regularly engaged in the engineering design and production of systems deployed for the treatment of storm water runoff for at least five (5) years and which have a history of successful production, acceptable to the Engineer.

PART 3 – EXECUTION

3.1 HANDLING AND STORAGE

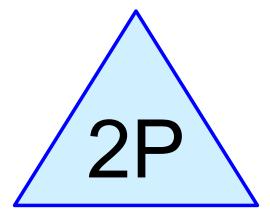
1. The contractor shall exercise care in the storage and handling of the SWTD components prior to and during installation. Any repair or replacement costs associated with events occurring after delivery is accepted and unloading has commenced shall be born by the contractor.

3.2 INSTALLATION

- 1. The SWTD shall be installed in accordance with the manufacturer's recommendations and related sections of the contract documents. The manufacturer shall provide the contractor installation instructions and offer onsite guidance during the important stages of the installation as identified by the manufacturer at no additional expense. A minimum of 72 hours notice shall be provided to the manufacturer prior to their performance of the services included under this subsection.
- 2. The contractor shall fill all voids associated with lifting provisions provided by the manufacturer. These voids shall be filled with non-shrinking grout providing a finished surface consistent with adjacent surfaces. The contractor shall trim all protruding lifting provisions flush with the adjacent concrete surface in a manner, which leaves no sharp points or edges.
- 3. The contractor shall removal all loose material and pooling water from the SWTD prior to the transfer of operational responsibility to the Owner.

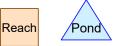
TABLE 1Storm Water Treatment DeviceHydraulic and Storage Capacities

	Treatment	Minimum Sump	Minimum Oil
	Capacity	Storage Capacity	Storage Capacity
CDS Model	<u>(cfs)/(L/s)</u>	$(yd^3)/(m^3)$	(gal)/(L)
CDS2015-4-C	0.7 (19.8)	0.9 (0.7)	61 (232)
CDS2015-5-C	0.7 (19.8)	1.5 (1.1)	83 (313)
CDS2020-C	1.1 (31.2)	1.5 (1.1)	99 (376)
CDS2025-C	1.6 (45.3)	1.5 (1.1)	116 (439)
CDS3020-C	2.0 (56.6)	2.1 (1.6)	184 (696)
CDS3025-C	2.4 (68.0)	2.1 (1.6)	210 (795)
CDS3030-C	3.0 (85.0)	2.1 (1.6)	236 (895)
CDS3035-C	3.8 (106.2)	2.1 (1.6)	263 (994)
CDS4030-C	4.5 (127.4)	5.6 (4.3)	426 (1612)
CDS4040-C	6.0 (169.9)	5.6 (4.3)	520 (1970)
CDS4045-C	7.5 (212.4)	5.6 (4.3)	568 (2149)
CDS5640-C	9.0 (254.9)	8.7 (6.7)	758 (2869)
CDS5653-C	14.0 (396.5)	8.7 (6.7)	965 (3652)
CDS5668-C	19.0 (538.1)	8.7 (6.7)	1172 (4435)
CDS5678-C	25.0 (708)	8.7 (6.7)	1309 (4956)
CDS2015-5-F	0.7 (19.8)	1.5 (1.1)	109 (413)
CDS2020-5-F	1.1 (31.2)	1.5 (1.1)	142 (538)
CDS2025-5-F	1.6 (45.3)	1.5 (1.1)	153 (579)
CDS3020-6-F	2.0 (56.6)	2.1 (1.6)	202 (765)
CDS3030-6-F	3.0 (85.0)	2.1 (1.6)	288 (1089)
CDS3035-6-F	3.8 (106.2)	2.1 (1.6)	327 (1236)
CDS4030-7-F	4.5 (127.4)	4.3 (3.3)	402 (1522)
CDS4040-7-F	6.0 (169.9)	4.3 (3.3)	500 (1892)
CDS4045-7-F	7.5 (212.4)	4.3 (3.3)	543 (2056)
CDS5640-8-F	9.0 (254.9)	5.6 (4.3)	554 (2098)
CDS5653-8-F	14.0 (396.5)	5.6 (4.3)	720 (2727)
CDS5668-8-F	19.0 (538.1)	5.6 (4.3)	859 (3252)
CDS5678-8-F	25.0 (708)	5.6 (4.3)	1081 (4091)
CDS3030-V	3.0 (85.0)	1.5 (1.1)	N/A
CDS5042-V	9.0 (254.9)	1.6 (1.2)	N/A
CDS5050-V	11.0 (311.5)	1.6 (1.2)	N/A
CDS7070-V	26.0 (736.3)	3.3 (2.5)	N/A
CDS10060-V	30.0 (849.6)	7.1 (5.4)	N/A
CDS10080-V	50.0 (1416.0)	7.1 (5.4)	N/A
CDS100100-V	64.0 (1812.5)	7.1 (5.4)	N/A


0.7 CFS > 0.64 CFS

CDS2015-4-C has capacity to treat WQv Storm

* Note that all "-C" systems can be fitted with a grated inlet if necessary


* Note that system internals for the "-C" and "-F" models can be put in larger manholes to accommodate site demands which may change standard capacities listed above

END OF SECTION

Subsurface Det Basin 1

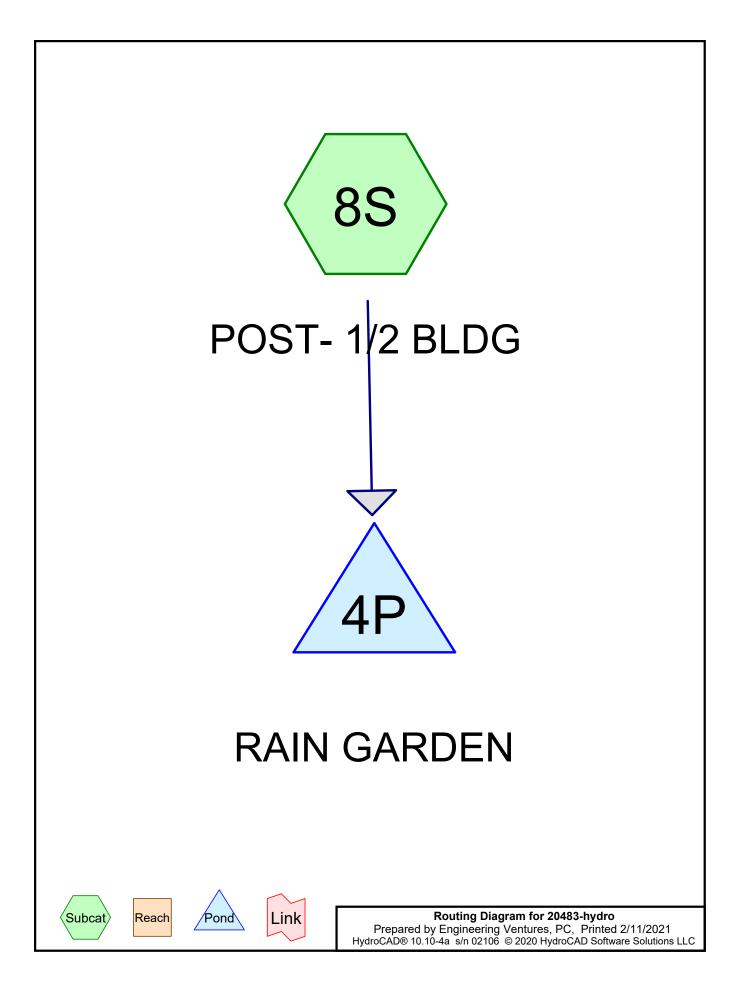
Link

Routing Diagram for 20483-hydro Prepared by Engineering Ventures, PC, Printed 2/11/2021 HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: Subsurface Det Basin 1

Volume	Invert	Avail.Storage	Storage Description
#1	165.00'	908 cf	20.50'W x 47.00'L x 3.50'H Prismatoid Impervious
			3,372 cf Overall - 1,103 cf Embedded = 2,270 cf x 40.0% Voids
#2	165.50'	1,103 cf	ADS_StormTech SC-740 +Cap x 24 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			24 Chambers in 4 Rows
		2,010 cf	Total Available Storage

Stage-Area-Storage for Pond 2P: Subsurface Det Basin 1


Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
165.00	0	167.55	1,611
165.05	19	167.60	1,638
165.10	39	167.65	1,664
165.15	58	167.70	1,690
165.20	77	167.75	1,713
165.25	96	167.80	1,736
165.30	116	167.85	1,757
165.35	135	167.90	1,778
165.40	154	167.95	1,798
165.45	173	168.00	1,818
165.50	193	168.05	1,837
165.55	231	168.10	1,856
165.60	269	168.15	1,876
165.65	308	168.20	1,895
165.70	346	168.25	1,914
165.75	384	168.30	1,933
165.80	422	168.35	1,953
165.85	460	168.40	1,972
165.90	497	168.45	1,991
165.95	535	168.50	2,010
166.00	572		
166.05	609		
166.10	646		
166.15	683		
166.20	720		
166.25	757		
166.30	793		
166.35	829		
166.40	865		
166.45	901		
166.50	937		
166.55	972		
166.60	1,007		
166.65	1,042		
166.70	1,077		
166.75	1,111		
166.80	1,145		
166.85	1,179		
166.90	1,212		
166.95	1,245		
167.00	1,278		
167.05	1,311		
167.10	1,343		
167.15	1,375		
167.20	1,406		
167.25	1,437		
167.30	1,467		
167.35	1,497		
167.40	1,526		
167.45	1,555		
167.50	1,584		
		I	

Summary for Pond 3P: Subsurface Det Basin 2

Volume	Invert	Avail.Storage	Storage Description
#1	168.00'	908 cf	20.50'W x 47.00'L x 3.50'H Prismatoid
			3,372 cf Overall - 1,103 cf Embedded = 2,270 cf x 40.0% Voids
#2	168.50'	1,103 cf	ADS_StormTech SC-740 +Cap x 24 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			24 Chambers in 4 Rows
		2,010 cf	Total Available Storage

Stage-Area-Storage for Pond 3P: Subsurface Det Basin 2

		I	C :
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
168.00	0	170.55	1,611
168.05	19	170.60	1,638
168.10	39	170.65	1,664
168.15	58	170.70	1,690
168.20 168.25	77 96	170.75 170.80	1,713 1,736
168.30	116	170.85	1,757
168.35	135	170.90	1,778
168.40	154	170.95	1,798
168.45	173	171.00	1,818
168.50	193	171.05	1,837
168.55	231	171.10	1,856
168.60	269	171.15	1,876
168.65	308	171.20	1,895
168.70	346	171.25	1,914
168.75	384	171.30	1,933
168.80	422	171.35	1,953
168.85	460 497	171.40 171.45	1,972 1,991
168.90 168.95	535	171.45	2,010
169.00	572	171.00	2,010
169.05	609		
169.10	646		
169.15	683		
169.20	720		
169.25	757		
169.30	793		
169.35	829		
169.40	865		
169.45	901		
169.50	937		
169.55 169.60	972 1,007		
169.65	1,042		
169.70	1,077		
169.75	1,111		
169.80	1,145		
169.85	1,179		
169.90	1,212		
169.95	1,245		
170.00	1,278		
170.05	1,311		
170.10 170.15	1,343 1,375		
170.15	1,406		
170.25	1,437		
170.30	1,467		
170.35	1,497		
170.40	1,526		
170.45	1,555		
170.50	1,584		
		l	

Runoff = 0.58 cfs @ 11.96 hrs, Volume= 0.030 af, Depth= 2.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 1-YR Rainfall=2.23"

	Area	(ac)	CN	Desc	cription		
*	0.	181	98	1/2 E	Building		
	0.	181		100.	00% Impe	rvious Area	а
		Leng					Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Summary for Pond 4P: RAIN GARDEN

Inflow Area =	0.181 ac,100.00% Impervious, Inflow D	epth = 2.00" for 1-YR event
Inflow =	0.58 cfs @ 11.96 hrs, Volume=	0.030 af
Outflow =	0.22 cfs @ 12.06 hrs, Volume=	0.035 af, Atten= 62%, Lag= 6.4 min
Discarded =	0.03 cfs @ 12.06 hrs, Volume=	0.032 af
Primary =	0.19 cfs @ 12.06 hrs, Volume=	0.003 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 167.07' @ 12.06 hrs Surf.Area= 730 sf Storage= 491 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 68.9 min (828.9 - 760.0)

Volume	Invert	Ava	il.Storage	Storage Description			
#1	164.25'	I	859 cf	Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio (fee 164.2 166.2 166.5 167.0 167.5	25 25 25 50 20	urf.Area (sq-ft) 414 414 414 690 981	Voids (%) 20.0 0.0 100.0 100.0	Inc.Store (cubic-feet) 0 166 0 276 418	Cum.Store (cubic-feet) 0 166 166 442 859		
<u>Device</u> #1 #2	Routing Discarded Primary	164	.25' 2.0 .00' 12.	tlet Devices 00 in/hr Exfiltration over Surface area 0" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads			

Discarded OutFlow Max=0.03 cfs @ 12.06 hrs HW=167.07' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.19 cfs @ 12.06 hrs HW=167.07' (Free Discharge) ←2=Orifice/Grate (Weir Controls 0.19 cfs @ 0.86 fps)

Runoff = 1.10 cfs @ 11.96 hrs, Volume= 0.059 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 10-YR Rainfall=4.15"

	Area	(ac)	CN	Desc	cription		
*	0.	181	98	1/2 E	Building		
	0.	181		100.	00% Impe	rvious Area	а
		Leng					Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Summary for Pond 4P: RAIN GARDEN

Inflow Area =	0.181 ac,100.00% Impervious, Inflow D	epth = 3.91" for 10-YR event
Inflow =	1.10 cfs @ 11.96 hrs, Volume=	0.059 af
Outflow =	1.05 cfs @ 11.98 hrs, Volume=	0.061 af, Atten= 5%, Lag= 1.7 min
Discarded =	0.04 cfs @ 11.98 hrs, Volume=	0.040 af
Primary =	1.01 cfs @_ 11.98 hrs, Volume=	0.021 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 167.21' @ 11.98 hrs Surf.Area= 814 sf Storage= 602 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 68.9 min (815.2 - 746.3)

Volume	Invert	Ava	il.Storage	Storage Description			
#1	164.25'		859 cf	Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio (fee 164.2 166.2 166.5 167.0 167.5	et) 25 25 50 00	urf.Area (sq-ft) 414 414 414 690 981	Voids (%) 20.0 0.0 100.0 100.0	Inc.Store (cubic-feet) 0 166 0 276 418	Cum.Store (cubic-feet) 0 166 166 442 859		
<u>Device</u> #1 #2	Routing Discarded Primary	164	.25' 2.0 .00' 12.	let Devices 00 in/hr Exfiltration over Surface area 0" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads			

Discarded OutFlow Max=0.04 cfs @ 11.98 hrs HW=167.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=1.01 cfs @ 11.98 hrs HW=167.21' (Free Discharge) ←2=Orifice/Grate (Weir Controls 1.01 cfs @ 1.51 fps)

Runoff = 1.47 cfs @ 11.96 hrs, Volume= 0.080 af, Depth= 5.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 50-YR Rainfall=5.53"

	Area	(ac)	CN	Desc	cription		
*	0.	181	98	1/2 E	Building		
	0.181			100.00% Impervious Area			a
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0	•	•		· · ·		Direct Entry,

Summary for Pond 4P: RAIN GARDEN

Inflow Area =	0.181 ac,100.00% Impervious, Inflow D	epth = 5.29" for 50-YR event
Inflow =	1.47 cfs @ 11.96 hrs, Volume=	0.080 af
Outflow =	1.42 cfs @ 11.98 hrs, Volume=	0.081 af, Atten= 4%, Lag= 1.5 min
Discarded =	0.04 cfs @ 11.98 hrs, Volume=	0.046 af
Primary =	1.38 cfs @_ 11.98 hrs, Volume=	0.035 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 167.26' @ 11.98 hrs Surf.Area= 842 sf Storage= 642 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 72.0 min (813.3 - 741.3)

Volume	Invert	Ava	il.Storage	Storage Descri	ption	
#1	164.25'		859 cf	Custom Stage	Data (Prismatic)	Listed below (Recalc)
Elevatio (fee 164.2 166.2 166.5 167.0 167.5	25 25 50 00	urf.Area (sq-ft) 414 414 414 690 981	Voids (%) 20.0 0.0 100.0 100.0	Inc.Store (cubic-feet) 0 166 0 276 418	Cum.Store (cubic-feet) 0 166 166 442 859	
<u>Device</u> #1 #2	Routing Discarded Primary	164	1.25' 2.0 7.00' 12.	tet Devices 00 in/hr Exfiltrati 0" Horiz. Orifice/ ited to weir flow a		area

Discarded OutFlow Max=0.04 cfs @ 11.98 hrs HW=167.26' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=1.38 cfs @ 11.98 hrs HW=167.26' (Free Discharge) ←2=Orifice/Grate (Weir Controls 1.38 cfs @ 1.67 fps)

Runoff = 1.87 cfs @ 11.96 hrs, Volume= 0.102 af, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 100-YR Rainfall=7.00"

	Area	(ac)	CN	Desc	cription		
*	0.	181	98	1/2 E	Building		
	0.181			100.00% Impervious Area			a
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0	•	•		· · ·		Direct Entry,

Summary for Pond 4P: RAIN GARDEN

Inflow Area =	0.181 ac,100.00% Impervious, Inflow D	Pepth = 6.76" for 100-YR event
Inflow =	1.87 cfs @ 11.96 hrs, Volume=	0.102 af
Outflow =	1.80 cfs @_ 11.98 hrs, Volume=	0.103 af, Atten= 3%, Lag= 1.5 min
Discarded =	0.04 cfs @ 11.98 hrs, Volume=	0.051 af
Primary =	1.76 cfs @_ 11.98 hrs, Volume=	0.052 af

Routing by Sim-Route method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 167.31' @ 11.98 hrs Surf.Area= 870 sf Storage= 682 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 72.1 min (810.0 - 737.8)

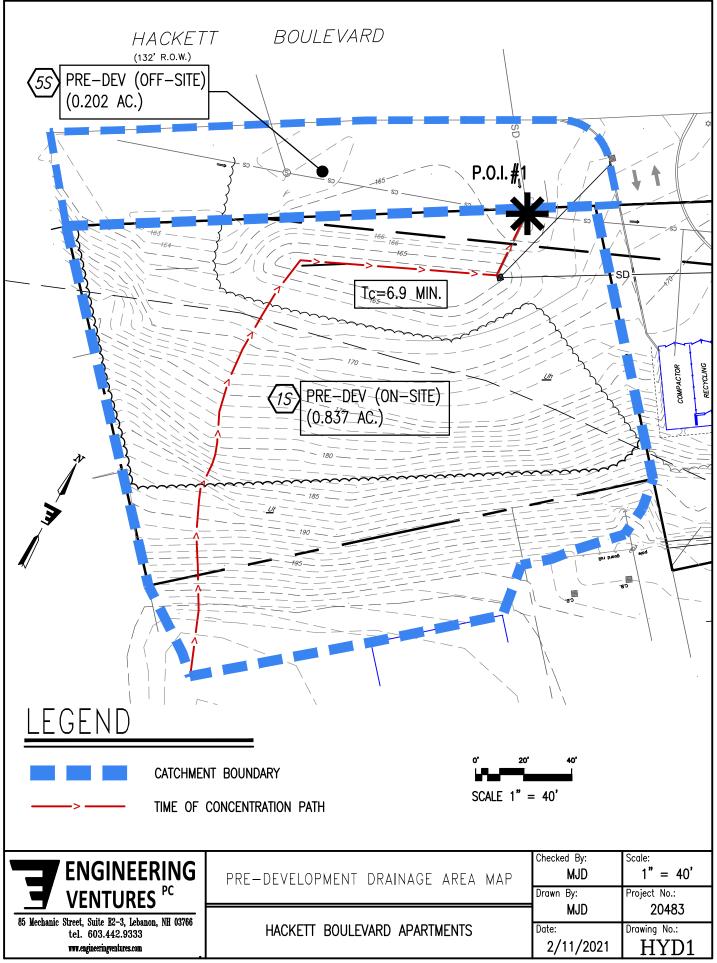
Volume	Invert	Ava	il.Storage	Storage Descri	ption	
#1	164.25'		859 cf	Custom Stage	Data (Prismatic)	Listed below (Recalc)
Elevatio (fee 164.2 166.2 166.5 167.0 167.5	et) 25 25 50 00	urf.Area (sq-ft) 414 414 414 690 981	Voids (%) 20.0 0.0 100.0 100.0	Inc.Store (cubic-feet) 0 166 0 276 418	Cum.Store (cubic-feet) 0 166 166 442 859	
<u>Device</u> #1 #2	Routing Discarded Primary	164	.25' 2.0 .00' 12.		i on over Surface / Grate C= 0.600 at low heads	area

Discarded OutFlow Max=0.04 cfs @ 11.98 hrs HW=167.31' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

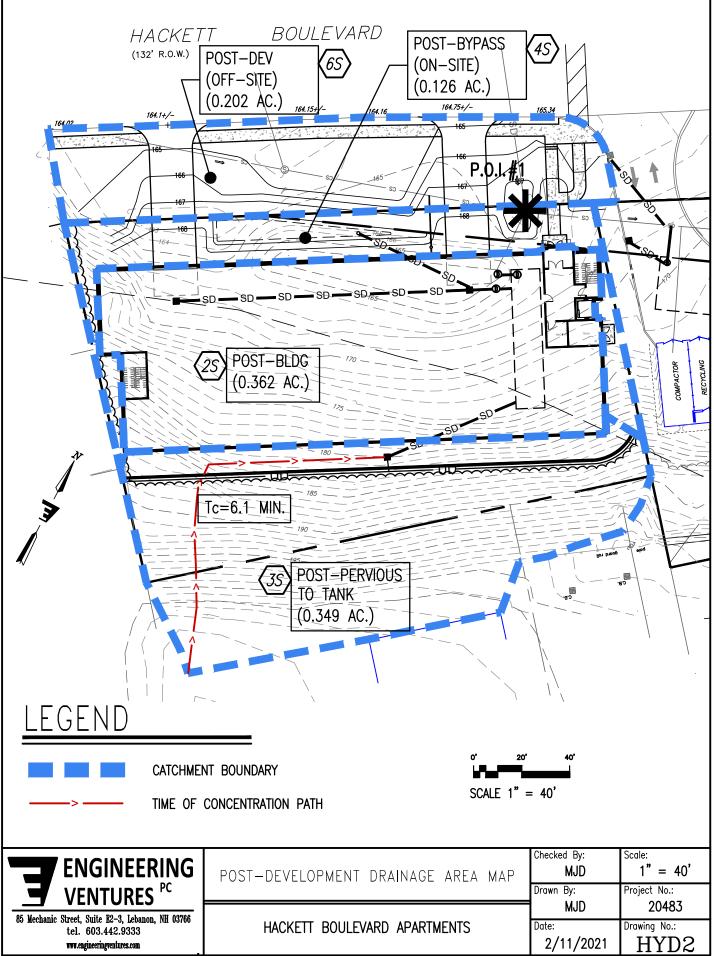
Primary OutFlow Max=1.76 cfs @ 11.98 hrs HW=167.31' (Free Discharge) ←2=Orifice/Grate (Weir Controls 1.76 cfs @ 1.82 fps)

Events for Subcatchment 8S: POST- 1/2 BLDG

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1-YR	2.23	0.58	0.030	2.00
10-YR	4.15	1.10	0.059	3.91
50-YR	5.53	1.47	0.080	5.29
100-YR	7.00	1.87	0.102	6.76


Prepared by Engineering Ventures, PC HydroCAD® 10.10-4a s/n 02106 © 2020 HydroCAD Software Solutions LLC Multi-Event Tables Printed 2/11/2021 Page 8

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
1-YR	0.58	0.22	0.03	0.19	167.07	491
10-YR	1.10	1.05	0.04	1.01	167.21	602
50-YR	1.47	1.42	0.04	1.38	167.26	642
100-YR	1.87	1.80	0.04	1.76	167.31	682


Events for Pond 4P: RAIN GARDEN

<u>Part 9:</u>

Plans

Plotted: 2/11/2021 11:39 AM

