

TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT IN THE CITY OF ALBANY, NY.

PREPARED FOR: South End Development, LLC

RAE PROJECT NUMBER: 20040801

DATE: June 22, 2020

RA ENGINEERING INC. 17665 LESLIE STREET, UNIT 40, NEWMARKET, ON. L3Y3E3.

Tel: (905)235-9105, Fax: (905)235-9150

E-Mail: info@raengineer.com, Web: www.raengineer.com

A SOLUTION PROVIDER FOR INDUSTRIES AND AGENCIES

DISCLAIMER

This document has been prepared by RA Engineering Inc. (RAE) for South End Development, LLC. (SED) for the Seventy-Six Mixed-use Redevelopment in The City of Albany, NY and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization of RAE being obtained. Neither RAE nor SED accept any responsibility or liability to any third party using or relying upon this document and such third party (ies) will by their use or reliance be taken to confirm their agreement to indemnify, defend and hold harmless RAE and SED for all losses, claims, expenses or damages ("Losses") resulting in whole or in part from any such use or reliance herein. To the extent that this document is based on information supplied by party (ies) other than South End Development, LLC, then in such instance(s) RAE accepts no responsibility or liability for any Losses suffered by any such third party (ies), whether through contract or tort, stemming from any conclusions based on data supplied by parties other than SED or RAE and used by RAE in preparing this document.

DOCUMENT REVISION HISTORY

VERSION	DATE	AUTHOR(S)	REVISION NOTES
0	06/22/2020	IAN REYNOLDS	1 ST SUBMISSION TO CITY
		RAGU NATHAN	
1	07/28/2020	IAN REYNOLDS	2 ND SUBMISSION TO CITY

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Site Location and Existing Conditions	1
	1.3	Development Plan	1
	1.4	Purpose of the Study	3
	1.5	Work Plan	4
2		STING TRANSPORTATION FACILITIE D SERVICES	
	2.1	Boundary Road Network	4
	2.2	Transit Network	
	2.3	Bicycle Route and Pedestrian Network	8
	2.4	Traffic Data	9
	2.5	Existing Traffic Operations	9
3	FUT	TURE TRANSPORTATION CONDITIONS	513
	3.1	Horizon Year	13
	3.2	Background Growth Rate	13
	3.3	Adjacent Development Plans	14
	3.4	Future Roadway Improvements	
	3.5	Future Transit Network	14
	3.6	Site Generated Traffic	14
	3.7	Trip Distribution and Assignment	16
	3.8	Intersection Operations	19
4	TRA	RKING DEMAND STUDY AND ANSPORTATION DEMAND	
	MA	NAGEMENT PLAN	22
	4.1	Introduction	
	4.2	Minimum Parking Requirements	23
	4.3	Transportation Demand Management Plan	24
5	CO	NSTRUCTION TRAFFIC Management pla	n.30
	5.1	Construction Parking Demand	30
	5.2	Construction Stages, Traffic & Noise	31
	5.3	Construction Haul Routes	31
6	COL	NCLUSION	3/

LIST OF TABLES

Table 1: Boundary Road Network Summary4
Table 2: Detailed Existing Level of Service at S Pearl St and
Second Ave12
Table 3: Detailed Existing Level of Service at Second Ave and
Krank St12 Table 4: Detailed Existing Level of Service at Second Ave and
Table 4: Detailed Existing Level of Service at Second Ave and
Leonard St12 Table 5: Detailed Existing Level of Service at Second Ave and
Table 5: Detailed Existing Level of Service at Second Ave and
Slingerland St
Table 6: Detailed Existing Level of Service at S Pearl St and
First Ave
Table 7: Detailed Existing Level of Service at Seymour St and
Krank St13 Table 8: Detailed Existing Level of Service at Seymour St and
Paniamin St
Benjamin St
Table 10: Detailed Existing and Future Levels of Service at S
Pearl St and Second Ave21
Table 11: Detailed Existing and Future Levels of Service at
Second Ave and Krank St21
Table 12: Detailed Existing and Future Levels of Service at
Second Ave and Leonard St21
Table 13: Detailed Existing and Future Levels of Service at
Second Ave and Slingerland St21
Table 14: Detailed Existing and Future Levels of Service at S
Pearl St and First Ave22
Table 15: Detailed Existing and Future Levels of Service at
Seymour St and Krank St22
Table 16: Detailed Existing and Future Levels of Service at
Seymour St and Benjamin St22
Table 17: Minimum Required Off-Street Parking:23
Table 18: Shared Parking Adjustment - Per USDO Section
375-4E(3)(b)24

LIST OF FIGURES

Figure 1: Project Location (Source: Google Earth)	2
Figure 2: Project Site Birds-Eye View (Source: Goog	le Earth)
	•
Figure 3: Development Plan	
Figure 4: CDTA Transit Network Servicing the Pro	ject Site
(Bus Route 6)	6
Figure 5: CDTA Transit Network Servicing the Pro	
(Bus Route 7)	7
Figure 6: ABC Bicycle Route Map	8
Figure 7: CDTC's Bicycle and Pedestrian Priority Ne	twork9
Figure 8: Existing Traffic Volume	11
Figure 9: Proposed BRT	14
Figure 10: Site Generated Trips	
Figure 11: Trip Distribution Model	
Figure 12: Post Development 2021 Volumes	20
Figure 13: Pedestrian Access	27
Figure 14: Construction Access and Haul Route	(Source:
Google Earth)	32
Figure 15: Access to I-787 (Source: Google Earth)	33
Figure 16: Construction Material Estimate	33

APPENDICES

Appendix A: Traffic Data

Appendix B: Level of Service Definitions

Appendix C: Detailed Capacity Analysis Worksheets Appendix D: ITE Trip Generation Manual Excerpts

Appendix E: Internal Credits Appendix F: USDO Excerpts

1 INTRODUCTION

1.1 Background

RA Engineering Inc. (RAE) is retained by South End Developments (SED) to complete a Traffic Impact Study (TIS), Parking Demand Study, Transportation Demand Management Plan (TDM) and Construction Traffic Management Plan, to support the Development Plan Application for the mixed-use redevelopment project (The Seventy-Six) located at 76 Second Avenue, in the City of Albany, New York.

This report will cover the studies in the following order:

- Traffic Impact Study (TIS)
- Parking Demand Study and Transportation Demand Management Plan (TDM)
- Construction Traffic Management Plan

1.2 Site Location and Existing Conditions

The project site located at 76 Second Avenue is approximately 2.4 acres in size, and is located ½ mile from S Pearl Street and only five minutes southwest from the downtown core of Albany NY, as shown in Figure 1. As shown in Figure 2, the site is bound by Second Avenue, Krank Street, Leonard Street, and Seymour Street. The Development Plan also includes Scott Street, a municipal road that connects Leonard Street to Krank Street midway across the property that will be decommissioned and converted to a pedestrian street. The properties that have existing structures contain a mix of single-family, two-family and townhouse residential uses, as well as commercial uses. Many of the existing properties are vacant. The topography of the site slopes down from the northwest (high side) to the southeast (low side) toward the intersection of Seymour Street and Krank Street. The site's properties are currently split between Residential-Townhouse (R-T) and Mixed-Use Neighborhood Edge (MU-NE) zoning districts.

1.3 Development Plan

The proposed development plan includes four, mixed-use modular buildings (A, B, C and D) ranging from six to eight stories. The ultimate build-out condition includes 239 residential dwelling units, 18 commercial spaces located on the first floor, and a rooftop lounge for catering and small events. The buildings will be built into the topography of the site. Parking will be provided below-grade underneath the buildings and will be accessed via two access drives on Krank Street and one access drive on Leonard Street. The Development Plan is presented in Figure 3.

The project is seeking to achieve the highest levels of sustainability by pursuing Triple Net Zero (zero energy, zero water, zero waste) and passive house design, as detailed in other documents provided separately. Development will be advanced in two phases:

- 1. Phase 1: Construction of three (3) mixed-use modular buildings (B, C and D) ranging from six to eight stories and subsurface parking; elimination of Scott Street for conversion to a pedestrian plaza; and associated pedestrian, lighting, landscaping and utility improvements.
- Phase 2: Construction of one (1) mixed-use modular building (A) ranging from six to seven stories with subsurface parking, and associated pedestrian, lighting, landscaping, and utility improvements. The design of Phase 2 structure is dependent on the ability to acquire 84 and 86 Second Avenue and the scale of the building will be reduced if the property owners decide not to sell.

Both phases of the project are anticipated to be complete and ready for occupancy in June 2021.

Figure 1: Project Location (Source: Google Earth)

Figure 2: Project Site Birds-Eye View (Source: Google Earth)

Figure 3: Development Plan

1.4 Purpose of the Study

The purpose of the Traffic Impact Study is to assess the traffic impacts on the external transportation system to facilitate anticipated future traffic demand due to the additional traffic generated by the proposed mixed-use development. The study will focus on analyzing such impacts at the ultimate build-out condition when all four buildings (A, B, C and D) are ready for occupancy in June 2021.

The Parking Demand Study/Transportation Demand Management Plan identifies the minimum parking requirements for the proposed development, as required by the City of Albany USDO. The analysis will also address how the provided parking, in conjunction with Transportation Demand Management activities, will meet this requirement. This part of the study also identifies the types of Transportation Demand Management activities that will be implemented as part of the development to reduce single vehicle use and ease traffic congestion. It demonstrates that the resulting traffic demand will not result

in traffic congestion in the surrounding area and that the provided off-street parking will not result in onstreet congestion in the surrounding area.

The Construction Traffic Impact Study identifies feasible haul routes, assesses construction traffic impacts to the external transportation system, and identifies preliminary mitigation measures that will be implemented prior to construction of this project.

1.5 Work Plan

The work plan follows the requirements outlined in the City of Albany Unified Sustainable Development Ordinance (USDO), April 2017 for Traffic Impact Studies, Parking Demand Studies and Transportation Demand Management Plans. In addition, the plan aligns with the strategies and actions identified in the City of Albany's, Albany 2030 Comprehensive Plan. Other standards and guidelines used in preparation of this study report are listed and described below.

- Trip generation calculations were completed based on the Institute of Transportation Engineers
 "Trip Generation Manual" 10th Edition
- Transportation Engineers "Parking Generation Manual" 5th Edition
- Transportation Research Board "Highway Capacity Manual A Guide for Multimodal Mobility Analysis"

2 EXISTING TRANSPORTATION FACILITIES AND SERVICES

2.1 Boundary Road Network

The study area includes a boundary road network, as follows: Second Avenue, First Avenue, South Pearl Street and Frisbie Avenue. First Avenue is designated as a local road while the other three roads are Minor Urban Arterial Roads. A summary of the characteristics of the boundary road network is provided in Table 1 below.

Table 1: Boundary Road Network Summary

Roadway	Second Ave	First Ave	S Pearl St	Frisbie Ave
Direction	East-West	East-West	North-South	North-South
Segment	East of Frisbie Ave	West of S Pearl St	South of Fourth Ave	North of McCarty Ave
Classification	Minor Urban Arterial	Local Road	Minor Urban Arterial	Minor Urban Arterial
Jurisdiction	City of Albany	City of Albany	City of Albany	City of Albany
Posted Speed Limit	30 mph	30 mph	30 mph	30 mph
Total Number of Lanes	2	2	2	2
Pedestrian Facilities	Paved sidewalk on east and west side	Paved sidewalk on east and west side	Paved sidewalk on east and west side	No sidewalk, except the east side of road between Second Ave and Avenue A
Cycling Facilities	None	None	None	None

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT

TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN

Prepared to Support the Development Plan Approval Process

THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

2.2 Transit Network

As shown in Figure 4, the Seventy-Six is situated along the Second Avenue corridor that is home to Bus Route 6 of the Capital District Transportation Authority (CDTA) transit network. Due to this easily accessible transit infrastructure, people living and doing business in the area are only an 8-minute bus ride away from the city's downtown core area. As shown in Figure 5, the Bus Route 7 bus stop is located ¼ Mile from the Seventy-Six at the S Pearl Street/Second Avenue intersection, and provides access to retail and other key locations south of the City. In summary, the existing CDTA bus network surrounding the Seventy-Six, provides closer and convenient transit access via the two CDTA routes (Bus Routes 6 and 7) connecting the economic engines of the City (downtown, retail, entertainment district, etc.)

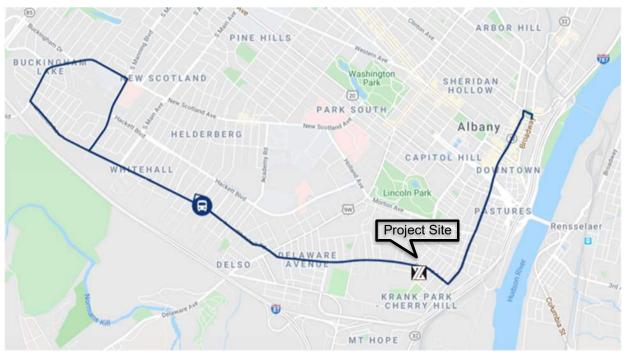


Figure 4: CDTA Transit Network Servicing the Project Site (Bus Route 6)

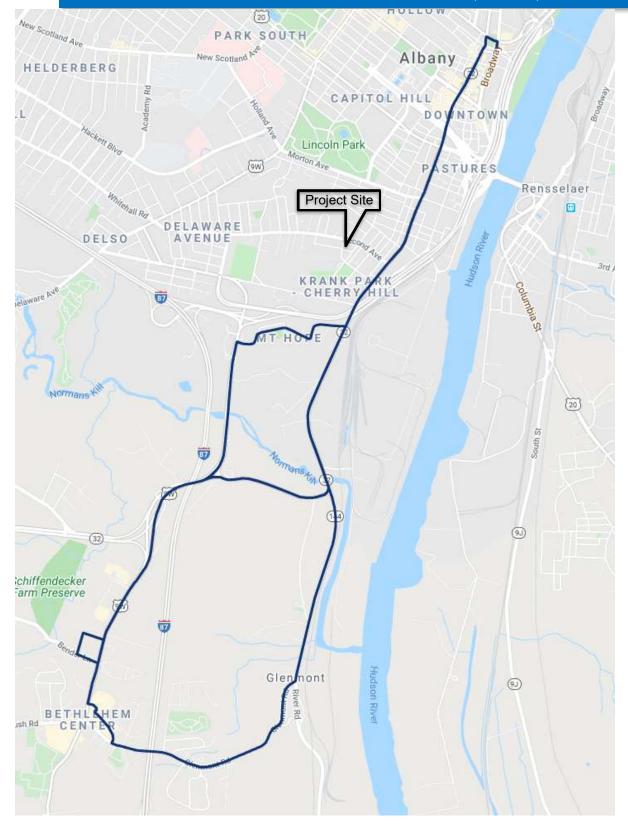


Figure 5: CDTA Transit Network Servicing the Project Site (Bus Route 7)

2.3 Bicycle Route and Pedestrian Network

As shown in Figure 6, the project site is located between two Albany Bicycle Coalition (ABC) preferred bicycle routes for commuters that work in and around the downtown core. This provides a great opportunity to expand bicycle commuting opportunities for residents, employees, and visitors of the Seventy-Six.

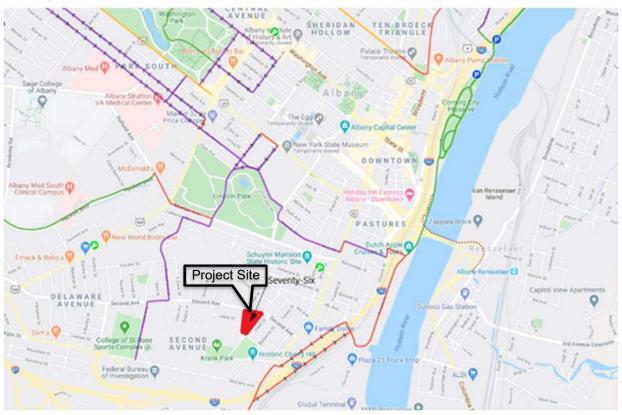


Figure 6: ABC Bicycle Route Map

As shown in Figure 7, the Seventy-Six is within Pedestrian District Tier 2 and at the boundary of Pedestrian District Tier 1 of the Capital District Transportation Committee (CDTC) Bicycle and Pedestrian Priority Network. Per CDTC, the pedestrian districts were created to highlight and address the fact that pedestrian movement is more fluid than linear, and that investments in pedestrian infrastructure should be made strategically, where there are greater densities of people living or working and in close proximity to pedestrian generating destinations. When a new Transportation Improvement Program (TIP) project evaluation system is adopted, proposed Tier 1 District projects will receive more points than proposed Tier 2 District projects. Since the Seventy-Six is at the edge of Tier 1, it is expected to receive all the attention a Tier 1 project receives and have access to the expanding pedestrian and cycling network.

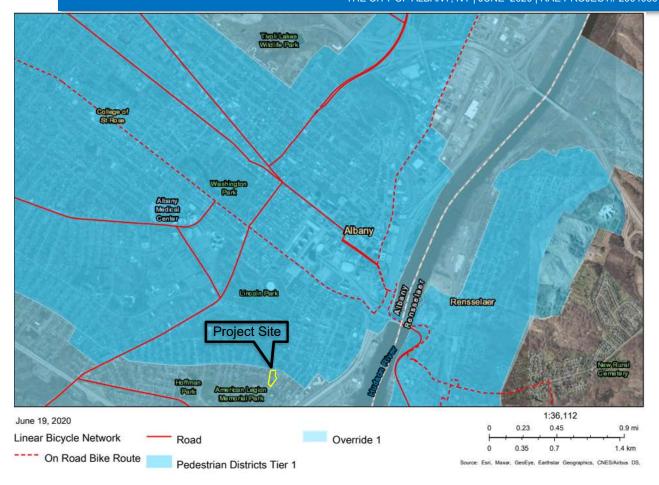


Figure 7: CDTC's Bicycle and Pedestrian Priority Network

2.4 Traffic Data

Due to unforeseen circumstances created by the COVID-19 pandemic, the ability to conduct independent Turning Movement Count (TMC) field studies at the intersections was deemed impossible. The reasoning behind this decision pertains to the record low traffic volumes that would not be an accurate representation of existing movements, to support evaluation of the development post COVID-19. The team is relying on previous data that is available from traffic studies conducted prior to 2020.

The following Agencies and Studies listed below were used to obtain data for the study area.

- NYSDOT, turning movement counts for state-maintained intersections
- NYSDOT, Short Term Daily Vehicle Counts
- CDTA, signal timing plans and turning movement counts along Second Ave via BRT Study

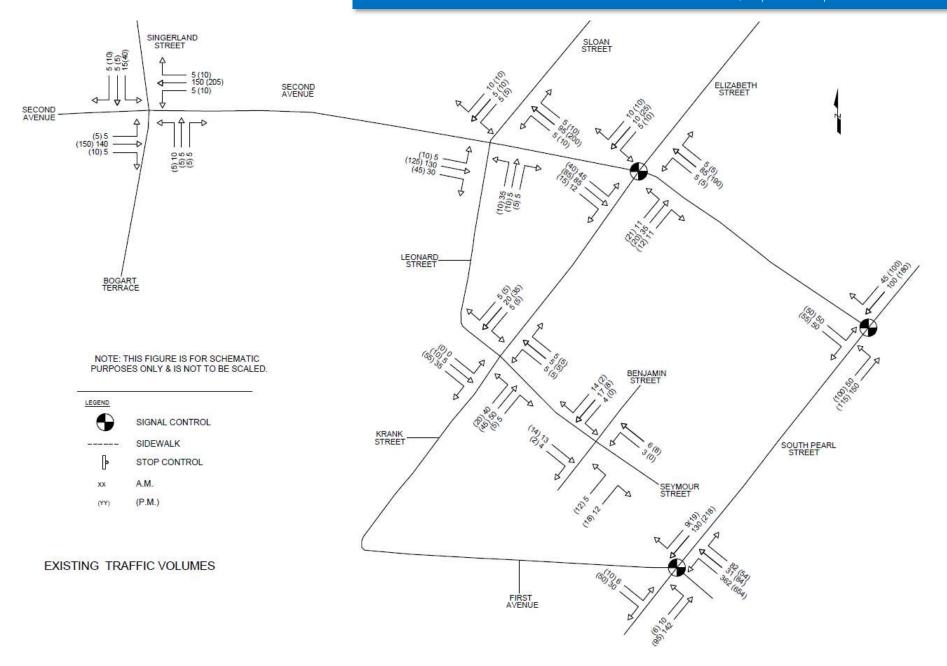
All other information, such as missing TMC's and street volumes, were estimated using short-term daily vehicle counts and comparing them to similar intersections where data is available.

Refer to **Appendix A** for a copy of the data used to establish existing traffic patterns in the study area.

2.5 Existing Traffic Operations

An existing condition level of service (LOS) assessment was performed for the study intersections under the current traffic / geometric conditions to identify operational / capacity deficiencies that currently exist within the study area. The assessment was completed using Synchro 11 / SimTraffic 11 based on the methodology outlined in the Institute of Traffic Engineers "Highway Capacity Manual, HCM 2010".

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN Prepared to Support the Development Plan Approval Process THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801


The LOS definitions employed in this study are attached in **Appendix B**.

Most of the intersections are signalized with the exception of four:

- 1. Second Ave/Leonard St;
- 2. Second Ave/Slingerland St (currently unsignalized, but new signal is under construction);
- 3. Krank St/ Seymour St; and
- 4. Benjamin St/ Seymour St.

The Synchro generated reports that detail the LOS calculations can be found in **Appendix C**.

Figure 8 depicts a visual representation of the existing traffic volume, followed by Table 2 through Table 8 with detailed existing LOS information.

Figure 8: Existing Traffic Volume

Table 2: Detailed Existing Level of Service at S Pearl St and Second Ave

S Pearl St and Second Ave – Signalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
SE Approach	A/5.8	A/6.3		
NE Approach	B/10.3	B/15.1		
SW Approach	A/7.3	A/5.2		
Intersection	A/8.3	A/8.5		

Table 3: Detailed Existing Level of Service at Second Ave and Krank St

Second Ave and Krank St – Signalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NE Approach	C/22.9	B/17.2		
SW Approach	B/18.0	B/16.2		
EB Approach	A/2.8	A/5.0		
WB Approach	A/2.8	A/5.8		
Intersection	A/7.6	A/7.7		

Table 4: Detailed Existing Level of Service at Second Ave and Leonard St

Second Ave and Leonard St – Unsignalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NB Approach	B/10.9	C/20.7		
SB Approach	A/9.8	B/14.0		
EB Approach	A/0.2	A/0.3		
WB Approach	A/0.4	A/2.6		

Table 5: Detailed Existing Level of Service at Second Ave and Slingerland St

Second Ave and Slingerland St – Unsignalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NB Approach	B/10.8	B/13.7		
SB Approach	B/11.0	B/12.3		
EB Approach	A/0.3	A/0.2		
WB Approach	A/0.2	A/0.3		

Table 6: Detailed Existing Level of Service at S Pearl St and First Ave

S Pearl St and First Ave – Signalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NE Approach	A/10.0	A/9.3		
SB Approach	A/9.4	B/11.9		
EB Approach	A/4.6	A/3.2		
WB	A/4.5	A/7.3		
Through/Right				
WB Left	B/14.1	D/53.5		
WB Approach	B/11.8	D/44.1		
Intersection	B/10.7	C/28.8		

Table 7: Detailed Existing Level of Service at Seymour St and Krank St

Seymour St and Krank St – Unsignalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NW Approach	A/7.2	A/7.6		
SE Approach	A/6.9	A/8.4		
NE Approach	A/7.7	A/8.5		
SW Approach	A/7.2	A/8.0		

Table 8: Detailed Existing Level of Service at Seymour St and Benjamin St

Seymour St and Benjamin St – Unsignalized				
Approach/	AM	PM		
Movement	2020 Existing	2020 Existing		
NW Approach	A/7.2	A/7.1		
SE Approach	A/7.0	A/7.1		
NE Approach	A/6.1	A/6.4		
SW Through	A7.1	A/7.1		
SW Approach	A/7.1	A/7.1		

The level of service outlined in Table 2 through Table 8 above indicate that the intersections within the study area are currently averaging a healthy LOS of "A", "B", and "C", with minimal delays and reserve capacity for increases in traffic volumes.

3 FUTURE TRANSPORTATION CONDITIONS

3.1 Horizon Year

The development (Phase 1 and Phase 2) is expected to be fully built-out in June 2021. Therefore, the planning horizon year 2021 has been analyzed.

3.2 Background Growth Rate

The background growth rate was derived from historical Annual Average Daily Traffic (AADT) volumes for the segments of Second Ave, S Pearl St, Delaware Ave, Hoffman Ave, and Morton Ave that are near the Site. The most recent AADT data available for these segments are from 2016; thus, growth rate trends were derived from 2010-2016 AADT data, which has been included in **Appendix A** for reference. The background growth rate is 0.5% per year.

3.3 Adjacent Development Plans

At the time of writing this report, there have been no formal applications submitted to or approved by the City of Albany for developments in the vicinity of the study area.

3.4 Future Roadway Improvements

No capacity improvements have been planned for the boundary roads within the study horizons.

3.5 Future Transit Network

Second Avenue is undergoing future transit improvements (shown in Figure 9) with a proposed Bus Rapid Transit (BRT) route connecting Albany and Troy that is set to open in 2020. With this improvement, along with the Bus Route 6 bus service, the proposed development is well connected to the multimodal transit network, providing convenient and economical transit for the residents and business users. Improvements as part of the BRT project include traffic signal replacements and a new signal at the Second Avenue/Slingerland Street intersection.

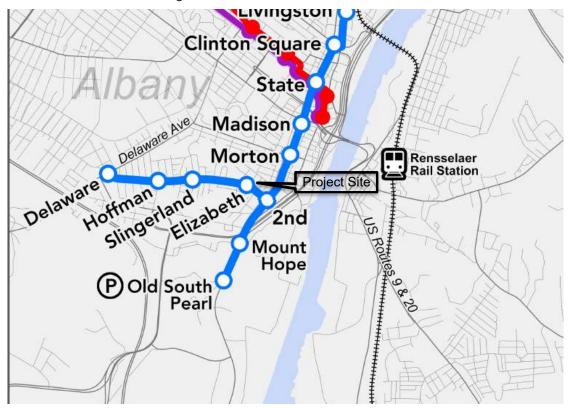


Figure 9: Proposed BRT

3.6 Site Generated Traffic

The proposed development will result in additional vehicles on the boundary road network that previously did not exist, as well as additional turning movements at the site entrances.

The trip generation of the proposed development was forecasted using the average rates provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition. Relevant excerpts from the ITE Trip Generation Manual, 10th Edition have been included in **Appendix D**.

Table 9 outlines the land use categories proposed in the development plan.

Table 9: Land Use Categories

Component	Land	Peak	AM Hour	Trips	Peak PM Hour Trips		
	Use Code	ln	Out	Total	ln	Out	Total
Residential	221	22	61	83	64	41	105
(246 units)							
Office	710	17	3	20	3	17	20
(17.5 KSF)							
Commercial/Daycare	565	31	28	59	28	32	60
(5.4 KSF)							
General/Specialty Retail	820	5	3	8	14	16	30
(8.0 KSF)							
Restaurant	932	27	23	50	30	19	49
(5.0 KSF)							
Restaurant	933	30	20	50	28	29	57
(2.0 KSF)							
Supermarket	850	30	20	50	61	59	57
(13.0 KSF)							
Subtotal (Unadjusted)		162	158	320	228	213	441
Internal Trip Capture		-23	-26	-49	-93	-92	-185
External Trips		139	132	271	135	121	256
Urban Infill/Redevelopment Capture		-20	-25	-45	-44	-34	-78
Total New Trips		119	107	226	91	87	178

Since the project is a mixed-use redevelopment, there will be internal capture trips for an interaction between the various components. Internal trip credits to account for the interaction of the various development components were based on a review of information contained in the ITE publication *Trip Generation Handbook, 3rd edition and using the National Cooperative Highway Research Program (NCHRP) 684 Internal Trip Capture Estimation Spreadsheet.* The internal capture trip calculations are shown in **Appendix E**.

Additionally, the *Trip Generation Manual* data sets do not reflect trip generation at urban infill sites such as for the Seventy-Six. From the *Trip Generation Handbook*, redevelopment in built-out areas often results in fewer vehicle trips generated than would result in suburban and outlying locations. This may be the result of modal shifts to more walking, more transit ridership, more bicycling, and higher vehicle occupancy. Infill credits are taken after accounting for internal trips. Calculations for the infill credits are also shown in **Appendix E**.

As shown in Table 9, the trip generation analysis using the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition calculates a weekday A.M. generation factor of 226 trips and a P.M. Factor of 178 trips.

3.7 Trip Distribution and Assignment

Trips generated by the development were distributed to and from the boundary road network based on local driver commuter patterns, working in and out of the south end. Other data such as intersection vehicle volumes were also filtered to determine the origin of trips travelling to the downtown core for the purpose of work in the morning peak period and the destination of trips travelling to the south end, leaving work in the evening peak period. The same inbound and outbound trip assignment was applied in the A.M. and P.M. peak hours.

The following trip distribution was established based on commuter driving patterns. The site has three access driveways into underground parking facilities, two of which are located on Krank Street to the east and the other located on Leonard Street to the west. Most parking spaces are accessible through Krank Street, where 61% of the overall parking is accommodated. This means that most of the traffic going into the development will travel along the eastside to access parking.

Figure 10 represents site trips generated by the development. Figure 11 represents the trip distribution model that was used to calculate inbound and outbound trips generated by the development. In general, it is estimated that trips will be 25% to/from the west; 60% to/from the east and north; and 15% to/from the south.

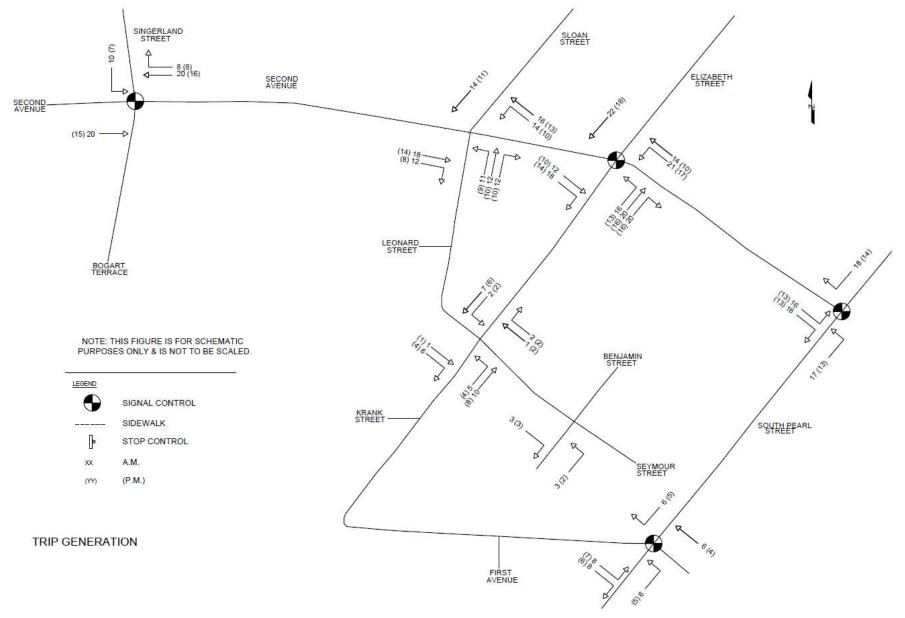


Figure 10: Site Generated Trips

Figure 11: Trip Distribution Model

3.8 Intersection Operations

Details for the 2021 future build LOS are outlined below in Table 10 through Table 16. These operations are based on the future background traffic volumes and the trips generated by the Seventy-Six, as shown in Table 9. These volumes reflect a 0.5% growth rate for one year, due to completion of construction in 2021. LOS definitions are included in **Appendix B** and detailed capacity analysis worksheets (Synchro Reports) are included in **Appendix C**.

Figure 12 depicts the updated intersection volumes, following the Trip Distribution Analysis.

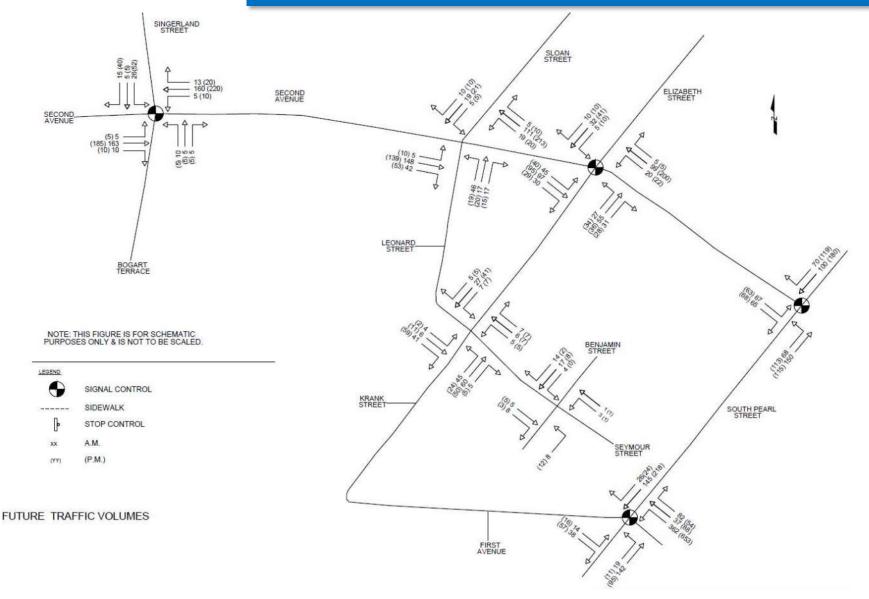


Figure 12: Post Development 2021 Volumes

Table 10: Detailed Existing and Future Levels of Service at S Pearl St and Second Ave

S Pearl St and Second Ave – Signalized							
Approach/	AM PM						
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
SE Approach	A/5.8	A/6.0	A/6.3	A/6.3			
NE Approach	B/10.3	B/14.4	B/13.6	B/15.8			
SW Approach	A/7.3	A/6.6	A/5.2	A/9.3			
Intersection	A/8.3	A/9.7	A/8.1	B/10.7			

Table 11: Detailed Existing and Future Levels of Service at Second Ave and Krank St

Second Ave and Krank St – Signalized							
Approach/	-	AM	PM				
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
NE Approach	C/22.9	C/22.9	B/17.2	B/17.5			
SW Approach	B/18.0	B/18.6	B/15.2	B/17.69			
EB Approach	A/2.8	A/3.5	A/5.0	A/4.9			
WB Approach	A/2.8	A/3.9	A/5.8	A/6.1			
Intersection	A/7.6	A/10	A/7.7	A/8.6			

Table 12: Detailed Existing and Future Levels of Service at Second Ave and Leonard St

Second Ave and Leonard St – Unsignalized							
Approach/	A	M	PM				
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
NB Approach	B/10.9	B/12.1	C/20.7	D/27.9			
SB Approach	A/9.8	B/11.2	B/14.0	C/16.4			
EB Approach	A/0.2	A/0.2	A/0.3	A/0.3			
WB Approach	A/0.4	A/1.1	A/2.6	A/2.2			

Table 13: Detailed Existing and Future Levels of Service at Second Ave and Slingerland St

Second Ave and Slingerland St – Unsignalized/Signalized							
Approach/	A	M	PM				
Movement	2020 Existing (Unsignalized)	2021 Future (Signalized)	2020 Existing (Unsignalized)	2021 Future (Signalized)			
NB Approach	B/10.8	C/21.1	B/13.7	B/18.6			
SB Approach	B/11.0	C/21.4	B/12.3	B/17.6			
EB Approach	A/0.3	A/2.4	A/0.2	A/2.9			
WB Approach	A/0.2	A/5.3	A/0.3	A/3.1			

Table 14: Detailed Existing and Future Levels of Service at S Pearl St and First Ave

S Pearl St and First Ave – Signalized							
Approach/	A	M	PM				
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
NE Approach	A/10.0	B/10.2	A/9.8	A/9.9			
SW Approach	A/9.4	B/10.2	B/11.2	B/11.2			
EB Approach	A/4.6	A/8.7	A/3.3	A/3.4			
WB Approach	B/11.8	B/13.1	D/49.3	D/49.6			
Intersection	B/10.7	B/11.7	C/28.8	C/31.4			

Table 15: Detailed Existing and Future Levels of Service at Seymour St and Krank St

Seymour St and Krank St – Unsignalized							
Approach/	A	M	PM				
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
NW Approach	A/7.2	A/7.3	A/7.6	A/7.7			
SE Approach	A/6.9	A/7.1	A/8.4	A/8.7			
NE Approach	A/7.7	A/7.9	A/8.5	A/8.6			
SW Approach	A/7.2	A/7.4	A/8.0	A/8.1			

Table 16: Detailed Existing and Future Levels of Service at Seymour St and Benjamin St

Seymour St and Benjamin St – Unsignalized							
Approach/	Α	M	PM				
Movement	2020 Existing	2021 Future	2020 Existing	2021 Future			
NW Approach	A/7.2	A/7.3	A/7.1	A/7.1			
SE Approach	A/7.0	A/6.8	A/7.1	A/7.0			
NE Approach	A/6.1	A/7.9	A/6.4	A/7.9			
SW Approach	A/7.1	A/7.0	A/7.1	A/7.0			

The level of service outlined in Table 10 through Table 16 above indicate that the site access is expected to operate under excellent conditions with minimal delays to inbound and outbound volumes. The intersections along Second Avenue and S Pearl Street are anticipated to continue operating at a LOS "A" and "B" in the weekday A.M. and P.M. peak hours, with the exception of First Avenue and S Pearl Street operating at a LOS of "C" and at Leonard street operating at a LOS of "D".

To mitigate the level of service change from C to D for the northbound approach of Leonard Street to Second Avenue, an All-Way Stop control intersection will be needed. The level of service for the northbound approach will improve to level of service B and all other approaches would be A and B. However, it is not recommended to change to an All-Way Stop as it will have negative effects on the BRT line as it introduces delay to the Second Avenue mainline. The increase in delay for Leonard Street without improvements is minimal and about two seconds above the level of service C range and into the level of service D range.

4 PARKING DEMAND STUDY AND TRANSPORTATION DEMAND MANAGEMENT PLAN

4.1 Introduction

In accordance with the City of Albany's, Unified Sustainable Development Ordinance (USDO) and in alignment with the "Albany 2030 Comprehensive Plan" (adopted in 2012), the development will implement a Transportation Demand Management Plan (TDM) to reduce the daily amount of single occupant vehicles commuting to work. With this reduction in cars, the City hopes to relieve congestion in some of the major business hubs. This section outlines the TDM measures that will be applied at the Seventy-Six to meet the City's goal, as well as the high sustainability goals of the development.

4.2 Minimum Parking Requirements

The Seventy-Six will provide a minimum of 250 parking spaces in the underground parking garages, which are designed to allow shared parking spaces between the residential and commercial users. All parking spaces will be monitored via a smart digital parking management system.

The parking requirements for the project were estimated by determining the minimum off-street parking required for each proposed use, then applying the applicable adjustments in accordance with USDO Section 375-4E (Development Standards – Parking and Loading), as detailed in this section. Relevant excerpts of the USDO standard are provided in **Appendix F**. Table 17 shows the estimated minimum quantity of off-street parking spaces, per USDO Table 375-4-6, as an initial total before applying applicable adjustments.

Per USDO Section 375-4(E)(3)(b), where two or more uses listed in Table 375-3-1, share a parking lot or structure, the total off-street automobile parking requirement for those uses may be reduced by the factors shown in Table 375-4-7. This is accomplished by adding the requirements for each category, then dividing the sum by the factor indicated in Table 375-4-7. Since more than two uses share a parking lot or structure, this adjustment is made for the two uses with the largest off-street parking requirements (dwelling, multi-family and retail) and any parking requirements for additional uses are added to that adjusted requirement without further adjustment. Table 18 provides the estimated minimum number of off-street parking spaces for the two largest uses, and the reduced quantity required for those two uses after applying the shared parking reduction factor. The total estimated required parking after application of the shared parking adjustment is 328.

Upon completion of the CDTA River Corridor Bus Rapid Transit (BRT) Line (BusPlus Blue Line) in November 2020, the proposed development will be located within ¼ mile of a multi-modal transit stop with a peak service frequency of 15 minutes or better. As such, the minimum number of required offstreet parking spaces has been reduced by 20%, resulting in an estimated total of 263 spaces.

Table 17: Minimum Required Off-Street Parking:

Use	Proposed		Minimum Off-Street Parking		F	Required Pa	arking	
	Units/ GSF/NLA	Required per Unit			Initial Total	Reduced Shared Total	Proximity to Transit 20% Reduction	
Dwelling, Multi- Family	239	1	per	1	dwelling unit	239	239	
Community Center	2,353	1	per	300	gross floor area	8	8	
Restaurant	2,352	1	per	150	net leasable area	16	16	
Office	2,688	1	per	400	net leasable area	7	7	
Personal or Business Service	11,985	1	per	400	net leasable area	30	30	
General or Specialty Retail	12,219	1	per	400	net leasable area	31	7	
Supermarket	9,774	1	per	300	net leasable area	33	7	
Day Care Center	4,113	1	per	300	net leasable area	14	14	
Total						375	328	263

Table 18: Shared Parking Adjustment - Per USDO Section 375-4E(3)(b)

Largest Use 1: Dwelling, Multi-Family	239
Largest Use 2: Retail (General/Specialty Retail & Supermarket)	64
Subtotal Required	303
Shared Parking Reduction Factor	1.2
Shared Parking Required for Two Largest Uses	253
Parking Required for Additional Use	75
Total Required after Shared Parking Reduction	328

The proposed development includes approximately 250 off-road parking in the underground garages, which is only 13 parking spaces less than the minimum parking spaces required for the development, as summarized in Table 18. However, it shall be noted that the following measures will also be implemented as part of the development to further reduce the parking needs:

- The developer is actively evaluating implementation of an electric car, carshare program for residents of the Seventy-Six. This service will offer several vehicles for scheduled, affordable rental by residents on an hourly or daily basis. The program will be operated and managed by the developer, and is expected to further reduce the quantity of personal vehicles and parking spaces required.
- The development will actively monitor shared use of the parking garages with a digital
 management system to ensure maximum utilization of parking spaces. Those who do not have
 a car or other personal vehicles will have the option of reduced monthly rent, and the unused
 spaces will be available for rental by residents that need more than one space per unit.

While it is noted that the USDO allows for credit to be taken for available on-street parking, we recognize that the adjacent streets are narrow in width and that concerns exist by neighbors regarding on-street parking. As such, we will not take credit for any on-street parking that may be available along the property frontages. However, with the above outlined measures and the TDM plan outlined below, we are fully confident that the number of parking spaces to be provided as part of this development will not only meet the minimum parking requirement, but also provide a low-carbon transportation footprint through emphasis on alternative transportation and a healthier lifestyle. In accordance with the USDO, it is requested that the Chief Planning Official review the alternative parking plan proposed herein, and provide approval of the 13-space parking reduction, if deemed warranted, without the need for an area variance.

4.3 Transportation Demand Management Plan

This section describes the Transportation Demand Management Plan (TDM) measures that will be applied to promote alternative transportation options to the users of the Seventy-Six development in order to help decrease the roadway traffic volumes generated by the development. The TDM discussed here will align the development with the future vision outlined in City of Albany's 2030 "Comprehensive Plan".

4.3.1 Local Context

It is essential that TDM measures consider and complement the existing and planned transportation infrastructure in the vicinity of the development. In particular, the surrounding infrastructure needs to be able to support the alternative transportation modes that will be promoted and incentivized through TDM. Refer to Figure 4, Figure 5 and Figure 7, for the existing and planned alternative transportation infrastructure in the vicinity of the new development.

The highlights of the existing and future transportation amenities of the surrounding the project area are detailed in Section 2 and Section 3 and summarized below:

- As shown in Figure 4, the Seventy-Six is situated along the Second Avenue corridor that is home to Bus Route 6 of the Capital District Transportation Authority (CDTA) transit network.
- As shown in Figure 5, Bus Route 7 has a stop at the S Pearl Street/Second Avenue intersection, which is only a ¼ mile away from the project site.
- As shown in Figure 6, the project site is located between two Albany Bicycle Coalition (ABC) preferred bicycle routes for commuters that work in and around the downtown core. This provides a great opportunity to expand bicycle commuting opportunities for residents, employees, and visitors of the Seventy-Six.
- Second Avenue is also undergoing future transit improvements (shown in Figure 7) with a
 proposed Bus Rapid Transit (BRT) route that is set to open in 2020. With this improvement,
 along with Bus Route 6, the proposed development is well connected to the multimodal transit
 network, providing convenient transit access for the residents and business users.

Overall, the proposed development site will provide commuters with access to a wide variety of alternative transportation options.

4.3.2 Roles and Responsibilities

The TDM measures discussed in this plan can be divided into the following two (2) categories:

- Category 1: New site-specific and connecting infrastructure
- Category 2: Incentives and strategies that enhance the attractiveness of alternative transportation modes

Category 1 measures focus on implementing site infrastructure and amenities that support efficient and sustainable commuting. This includes both site-specific infrastructure (e.g. bicycle parking and carpool parking) and infrastructure that provides connectivity with the surrounding transportation system (e.g. transit stops, connecting sidewalks, bicycle path, and multi-use paths). This first category of TDM is in the direct control of the developer and serves to provide the base infrastructure that is necessary to allow the incentives and strategies of Category 2 to work.

Category 2 focuses on encouraging use of existing efficient and sustainable transportation options through structured programs and initiatives (e.g. transit pass programs, carpooling programs, shared taxi and incentives for not using a parking space). These programs require education, in order to increase participation and promote a sustainable lifestyle.

4.3.3 New Infrastructure

This section describes the infrastructure that will be implemented at the Seventy-Six as part of the development of all four buildings to support the use of alternative transportation modes. The supporting infrastructure will be constructed and ready to use at the build-out stage.

Pedestrian Access

- The overall pedestrian network was designed to provide a complete network of barrier free walkways through the interior campus of the development. The network seamlessly interconnects the primary roadway sidewalks to each building, to the public plaza, and to private garden and other open spaces. The walkways provide access to both the building entrances and commercial frontages along the primary roads, as well as within the campus interior.
- The proposed building lobbies were designed to accommodate dual frontages to facilitate
 pedestrian connectivity. Private covered walkways were incorporated directly adjacent to
 the proposed building grade related uses to accommodate easy access year-round.
- Public sidewalks will be provided along the full frontage of Leonard Street, Seymour Street and Krank Street to encourage and support pedestrian connectivity and access to the commercial uses.

- Accessible sidewalks, or ADA accessible ramps and stairs are proposed at all key access points and along pedestrian circulation routes.
- Bicycle parking facilities are provided in each building.

Figure 13 below illustrates the planned pedestrian network both within and surrounding the proposed development. Supporting pedestrian infrastructure will be provided in phases that are parallel to the construction of each of the two phases of construction. Pedestrian connectivity will be provided for the three buildings to be constructed in Phase 1, without relying on Phase 2 infrastructure. This will ensure that proper pedestrian access is provided to each building once it is in operation and open to tenants.

Provision of Bicycle Parking Spaces

- Both long-term and short-term bicycle parking facilities are to be provided as part of the proposed Development Plan.
- A total of 50 short-term secure bicycle parking spaces, consisting of bicycle racks, will be
 provided on-site at key locations adjacent to the buildings, along roadway frontages, and
 adjacent to the covered walkway that provides access to the main entrances and
 commercial uses. The short-term bicycle parking spaces will be no more than 50 feet away
 from building entrances.
- Each building will be equipped with 25 interior, long-term bicycle parking spaces. These
 spaces will have direct access from the exterior of the building and provide internal access
 to the main lobby.

Bicycle infrastructure will be provided in phases that are parallel to the construction of each of the two phases of the construction. This will ensure that the bicycle facilities will be provided at each building once it is in operation and open to tenants.

Provision of Preferential Parking Locations for Carpooling

- A total of 30 parking spaces will be clearly marked as preferential parking locations for carpools. These spaces will be located within 50 feet of elevators/building entrances
- 511NY Rideshare/iPool2 is a recognized leader in the development and delivery of carpool
 priority parking and will assist the Seventy-Six by providing priority carpool parking signage
 designs and materials to promote the parking spaces once they are implemented.

Preferential parking spaces will be marked accordingly once each building is in operation and open to tenants.

Transit Access

Existing bus stops at Second Avenue/Krank Street and Second Avenue/Leonard Avenue will provide access to available transit, including CDTA Bus Route 6 and the new BRT line.

- Bus Route 6 runs daily services twice per hour throughout the work week and twice per hour on weekends until midnight, except for Sunday evening where is stops at 7:10 pm. Service resumes at 7:18 am Sunday morning, 5:48 am on weekdays and 6:18 am on Saturdays. As shown in the Development Plan, the Seventy-Six will integrate this existing bus stop by building a covered/heated seating area along Second Ave, where occupants and local residents are able to comfortably wait for the bus. With seamlessly integrated building and transit infrastructure, the need for travel is greatly reduced due to the practicality of an 8-minute bus ride to the downtown core. The enclosure will also be equipped with digital monitors that are connected to the CDTA compass software to give live updates and ETA on current busses along the route.
- The proposed River Corridor BRT route will connect Albany to Troy, and is set to open in 2020.
 The BRT will run 20 buses and make 31 stops along a route connecting Waterford, Troy, and

Albany. It would be the region's second BusPlus rapid transit line – the first serves the Route 5 corridor, which runs between Schenectady and Albany. With this improvement, along with Bus Route 6, the Seventy-Six will be well connected to the multimodal transit network, providing convenient transit access for the residents and business users.



Figure 13: Pedestrian Access

Bicycle Access

The Seventy-Six's proximity to major bicycle routes, makes the development an ideal living space for bicycle commuters heading into the downtown core on a daily basis. As shown in Figure 5, the Seventy-Six is located near Bus Route 7 and the south end bicycle link trail, both of which are ABC preferred bicycle routes. This connectivity will attract bicycle friendly occupants that will have access to dedicated storage areas for their bicycles and equipment. The integration and promotion of bicycle friendly services at the Seventy-Six will reduce the need for single occupant vehicles.

4.3.4 TDM Programs

The TDM programs will be easily integrated into the Seventy-Six, for use by residents and businesses, through partnerships with CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2, as detailed in this section.

- The developer will partner with CDTA to incorporate a bus stop with a heated bus shelter at the Second Avenue Frontage. The developer will also explore potential emission reduction funding and is considering implementation of a Universal Transit Access Program for the residents and businesses at the Seventy-Six. A Universal Transit Access Program includes a single transit pass that allows the residents and users to use the pass for all CDTA operated transit systems (busses, BRTs, and others). A fully automated transit kiosk will be installed at the bus stop to facilitate purchase of a Universal Transit Pass for those who have limited or no access to mobile applications.
- A partnership with the CDPHP Cycle! program will provide on-site bicycle-share stations to
 provide neighborhood access to cutting edge bicycles, available 24/7. This arrangement will
 provide a healthy, alternative mode of transportation to the Seventy-Six residents and visitors,
 while reducing traffic congestion and boosting the local economy. This program will be made
 available to residents and business visitors through local bulletin message boards and other
 means of communication.
- A multi-modal rideshare program will be made available to the residents and visitors of the Seventy-Six through a partnership with 511NY Rideshare/iPool2. This flexible arrangement gives users the freedom to choose how frequently they want to carpool and with whom.

The developer is committed to supporting TDM initiatives to reduce single occupancy vehicle trips and incentivize the use of alternative transportation at the Seventy-Six. To achieve this end, the developer will enter a multi-year partnership with CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2 to establish a best practice TDM program of sustainable commuting initiatives that are discussed in more detail in the following sections.

Years 1 – 2:

Baseline Commuter Survey and Site Assessment: A confidential transportation survey will be conducted amongst all residents and retail employees in the Seventy-Six in both online and paper formats. The survey will include questions that provide a measure of current commuter traffic patterns, modes of transportation, behaviors, and perceptions. To achieve a high response rate to the survey, prizes will be provided to incentivize participation. This initial survey will identify and assess the key commuting needs of the residents and retail employees and determine the demand for alternative transportation options. Furthermore, the baseline commuter survey will be the first component of an on-going monitoring effort that analyzes commuting trends and the progress made towards reaching the preferred mode split goal (higher proportion of transit and bicycle usage).

An on-site assessment will also be conducted to evaluate the existing site's commuting policies, infrastructure, accessibility to sustainable commute modes, and surrounding land use. Combined with the survey results, the on-site assessment will inform the development of strategies for reducing single occupancy vehicle trips to the site and promoting green transportation options.

Carpool Ride-matching: An online sub-group will be established on 511NY Rideshare/iPool2 that will be available to all residents and employees at the Seventy-Six. The sub-group will enable members to find carpool partners among others who live or work at the development, or select from the broad group of thousands of other registrants at over 35 Park & Ride locations in the City of Albany. The 511NY Rideshare/iPool2 program will be promoted to residents and employees through branded promotional materials, email communications/newsletters, and promotional events (see below).

Guaranteed Ride Home Program (GRP): The GRP program offered by the CDTA will offer alternative transportation commuters at the Seventy-Six a guaranteed method to get home quickly and

conveniently in the case of an urgent emergency. Each registered user will be entitled to a maximum of six rides per year for up to \$300 per year in GRP rides (no more than two rides per month). This service encourages employees to use alternative modes of transportation by ensuring that they will have an alternate ride home in the case of an emergency.

Promotional Events and Marketing: Participation in the CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2 programs will be promoted with annual campaigns and promotions, such as Bike to Work Day / Bicycle Month, Smart Commute Week, and Carpool Week. Through these promotions, residents and employees at the Seventy-Six will be able to win prizes for choosing sustainable transportation alternatives. These events will also track commuting activity during their timeframe, and the results will form another component of the overall TDM monitoring effort.

Interactive information sessions (e.g. in-house workshops / booths) may also be provided by the partnering agencies to introduce residents and employees to the programs, assist with registration, and outline the alternative commuting options. These events and other Sustainable Commute marketing materials will encourage and promote TDM participation for all users at the Seventy-Six.

In addition to taking advantage of the already programmed TDM measures, employees of the commercial spaces will be encouraged to consider the following types of employer specific TDM measures:

- Flexible Work Hours and Telecommuting: Flexible work arrangements can eliminate the need
 to travel to the workplace on certain days or even on most days of the week. However, such
 arrangements are not suitable to all employees and employers and are highly dependent on
 the nature of the work being performed.
- Transit Pass Programs / Incentives: Transit passes can be conveniently sold through employers via paycheck deductions. In some cases, transit passes sold through this method can be discounted by the transit agency and/or subsidized by the commercial employer.
- Shuttles and Vanpooling: Dedicated shuttles and vanpools can carry multiple commuters to local transit hubs and/or serve long-distance commutes that are not already well served by public transit.

Years 3 - 4

The following TDM initiatives previously presented above for Years 1-2 are expected to be on-going and continue into Years 3-4:

- 511NY Rideshare/iPool2 Sub-Group and Promotion
- Guaranteed Ride Home Program
- Promotional Events and Marketing

These initiatives will be expanded as necessary to include each of the new building phases as each building is completed and becomes occupied (minimum 50% occupancy).

The following additional TDM programs are also planned for Years 3-4:

Follow-Up Commuter Survey: A confidential follow-up transportation survey will be conducted amongst all residents and retail owners and employees of the Seventy-Six within 3-4 years of the baseline commuter survey. The results will be compared against those observed previously (Years 1-2) to track the progress of the TDM program and will serve to monitor progress towards reaching the City of Albany's overall transit mode split goal.

As soon as the survey is completed, a revised and updated TDM workplan will be developed that is tailored to the needs of the residents, commercial owners, and employees of the Seventy-Six.

Commuter Options Brochure: Lack of information on available transportation options can be a significant barrier to the usage of transit, walking, and cycling. To this end, the developed will work with

CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2 to develop a customized commuter options brochure for the Seventy-Six. This brochure will contain details on the variety of travel options available to residents, commercial owners, and employees such as: local and regional transit, the 511NY Rideshare/iPool2 ride-matching and vanpool programs, parking information, and location of cycling routes and bicycle parking. The brochure will be placed prominently in each building's foyer and will be particularly useful at the Seventy-Six since the transit routes that serve the area are provided by two (2) transit lines that each have their own distinct schedules, route and fare structures.

Budget

The overall four (4) year administrative budgets for the TDM program to be delivered through the partnerships with CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2 is estimated as follows:

Year One: \$10,000

Year 2-4: \$12,000 per year

Total: \$46,000

SED is committed to continuing its emphasis on TDM programs at the Seventy-Six beyond the initial four (4) years. It is anticipated that the future on-going TDM programs will be similar in scope to the initial program presented above, with modifications to incorporate advancing technologies and to ensure that the program continues to best meet the needs of the tenants, employees and employers.

5 CONSTRUCTION TRAFFIC MANAGEMENT PLAN

This section identifies anticipated construction parking demand; construction staging, traffic & noise; major construction and haul routes; and road/pedestrian path closure requirements. An overall assessment of construction traffic impacts is discussed throughout the section, and will be further developed. A detailed Construction Management Plan will be submitted to the City for review and approval prior to the start of construction of the Seventy-Six.

The Seventy-Six is a modular development project. This type of construction involves off-site assembly, which results in not only reduced construction traffic & impacts (noise, dust, vehicular and pedestrian impacts), but also reduced waste and energy consumption compared with regular construction projects. There are strong sustainability advantages associated with modular construction as discussed further in the sub-sections below.

5.1 Construction Parking Demand

All construction activities at the Seventy-Six are expected to occur within a closed construction fence with sound mitigation features installed around the active construction area. Secure access will be provided through the two construction access points at each end of Scott Street, as shown in Figure 14. All pedestrian sidewalks around the project site and beyond the active construction area will be left open for public use and regular maintenance activities. Temporary closures of sidewalks will occur in phases and will be coordinated with the City for the duration of sidewalk replacements. Construction access will be fully secured and monitored 24/7 by having full-time security, an entry/exit record management system and a CCTV recording system, while providing a convenient access to construction vehicles and emergency services. All construction stage parking will be provided through a combination of on-site and designated off-site parking areas to avoid congestion on local roads. Offsite parking will be coordinated with adjacent property owners for use of existing underutilized parking areas. Some visitor parking will be provided along Leonard Street and Seymour Street while ensuring the level of visitor parking at any time does not impact the regular public parking needs at any point in time. We anticipate not more than 5 to 10 construction visitor parking spaces on Leonard Street and Seymour Street at the peak construction phase, which is less than 50% of the number of legal on-street parking spaces available.

All staging and material storage areas required to support the construction will be provided within the closed site construction fence described above.

5.2 Construction Stages, Traffic & Noise

Construction of the Seventy-Six will occur in the following major stages, with slight overlaps as required:

- Site work (demolition, clearing & grubbing, excess material removal, grading, temporary shoring, excavation, utility installation, etc.)
- Foundation/parking garage excavation and construction
- Modular building delivery and fit-out
- Mechanical, Electrical, Plumping (MEP) and interior
- Pedestrian improvements and landscaping
- Finishing

Other than the site work and landscape work, all other major construction stages listed above will be completed within significantly less time compared to a regular construction project due to the inherent benefits of modular building construction. In particular, the construction traffic generation during the installation of modular units is significantly less compared to a regular construction project of similar size. Similarly, all MEP and finishing work is expected to generate significantly less construction traffic volume as the modular units come in standard sizes, with most MEP components preinstalled, demanding very minimum on-site work before commissioning.

Two construction accesses, Construction Access 1 fronting Leonard Street and Construction Access 2 fronting Krank Street as shown in Figure 14, will be provided to further reduce the traffic impact on the surrounding road network. Maximum frequency of construction vehicle access is expected to be not more than five trucks per hour, which is anticipated to occur during the peak production levels of site work and concrete pouring. As such, the traffic impact on the existing transportation network during the maximum frequency construction traffic and other conditions is very low.

The quantity of on-site construction equipment will be significantly reduced for this modular construction project, when compared to conventional building construction. As such, the associated noise, emission & dust impacts will also be significantly reduced.

5.3 Construction Haul Routes

The project site is located 1/4 mile from a major exit on I-787. There are two haul routes to the site that rely on primary roads. The most direct path is along First Ave to Krank Street, which runs directly into the site. On-street parking on portions of Krank Street may need to be temporarily prohibited if oversized vehicles are anticipated. This path does pass through a residential block and by the Albany Community Charter School, which makes this option less attractive.

The second haul route is along S Pearl Street and Second Ave. This route, which is slightly longer, passes through an industrial and mixed-use corridor that has on-street parking needs. There are residential properties mixed in along this route, but a high percentage of them are vacant. Collectively, these routes and the proximity to I-787 and the Port of Albany will allow for the removal of debris and fill from the site, as well as the delivery of construction materials including modular components, with a limited impact to residents. Both routes are shown in Figure 14 below. Figure 15 shows the access paths to/from I-787 and Figure 16 outlines the estimated construction materials required for each phase of the project.

As per NYSDOT, all vehicles (trucks, tractors, and trailers) must comply with the Infrastructure Friendly (IFV) requirements to be permitted under a Divisible Load Overweight Permit. All construction vehicles used in this project will have a Divisible Load Overweight Permit to ensure the project haul routes are protected from any damages resulting from overweight cargo.

Special hauling permits are required to move vehicles and/or loads on New York State highways if the vehicle and/or loads exceed the legal dimensions or weights specified in Section 385 of the New York State Vehicle and Traffic Law. NYSDOT issues different types of special hauling permits and relevant

permits will be obtained in advance, if oversize cargo delivery requirements are identified, as part of the Construction Management Plan that will be submitted prior to construction.

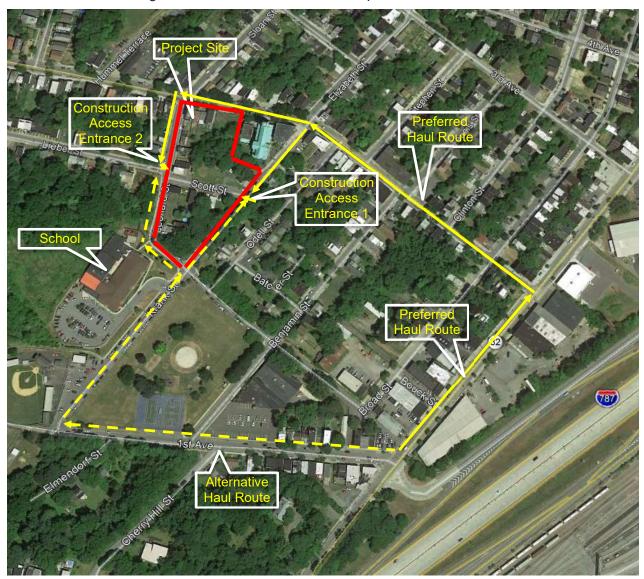


Figure 14: Construction Access and Haul Route (Source: Google Earth)

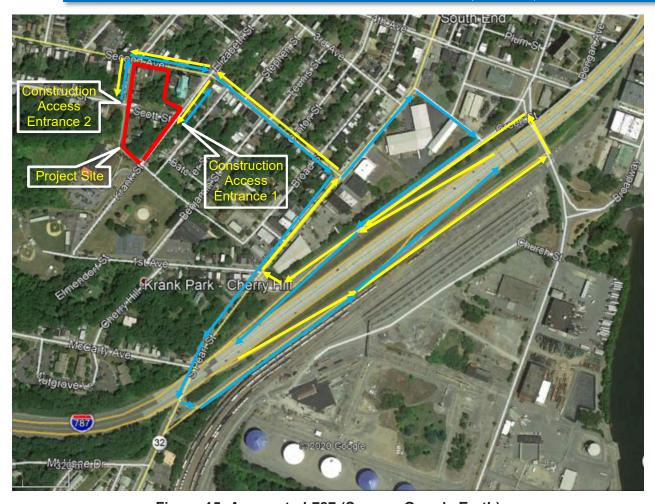


Figure 15: Access to I-787 (Source: Google Earth)

			Constru	ction Ma	terials - Ph	ase 1
Item	Value	Units	Number of Vehicles	Vehicles Per Hour	Total Time	Notes
Cut Removed	38150	CY	1908	5	6 weeks	10 hrs/day, 6 days/week , 20 CY Truck
Fill Required	6	CY	1	1	1 week	Simultaneous with Cut, 20 CY Truck
Concrete	5721	CY	573	3	5 weeks	10 CY Truck
Rebar	244	Ton	16	3	1 week	32,000lb Truck Capacity
Steel Piles	1869	Ton	117	3	1 week	32,000lb Truck Capacity
Modules	598	12	598	3	5 weeks	1 Unit Per Vehicle

			Constru	ction Ma	terials - Ph	ase 2
Item	Value	Units	Number of Vehicles	Vehicles Per Hour	Total Time	Notes
Cut Removed	18400	CY	920	5	3 week	10 hrs/day, 6 days/week , 20 CY Truck
Fill Required	0	CY	0	0	8 - 0	20 CY Truck
Concrete	2653	CY	266	3	2 weeks	10 CY Truck
Rebar	108	Ton	7	3	1 week	32,000lb Truck Capacity
Steel Piles	830	Ton	52	3	1 week	32,000lb Truck Capacity
Modules	203	9	203	3	2 weeks	1 Unit Per Vehicle

Figure 16: Construction Material Estimate

6 CONCLUSION

The Seventy-Six redevelopment is surrounded by: the CDTC Tier 1 and Tier 2 bicycle and pedestrian priority networks, several existing bicycle routes, minor arterial roads in all directions, traffic relief roads, and Interstate Highway (I-187). The development will be serviced by two major transit networks (CDTA Bus Routes 6 and 7), as well as the new River Corridor BRT line. With this improvement, along with the existing network, the proposed development is well connected to the multimodal transit network, providing convenient and economical transit access for the residents and business users. Improvements as part of the BRT project include traffic signal replacements and a new signal at the Second Avenue/Slingerland Street intersection. Convenient access to the multimodal transit network is expected to create a significant reduction in the trips generated from this net-zero community, which is designed to support a sustainable environment and healthy lifestyle.

Based on the detailed traffic impact analysis, it was determined that the proposed Seventy-Six development (Phase 1 and Phase 2) will have minor impacts on the operation of the peripheral road network. After adjustments, the total site trips generated from the development is 226 trips for weekday A.M. and 178 trips for weekday P.M. during 2021 future conditions.

The findings of the level of service analysis for future conditions in 2021 suggest that intersections along Second Avenue and S Pearl Street are anticipated to continue operating at a LOS "A" and "B" in the weekday A.M. and P.M. peak hours, with an exemption of First Avenue and South Pearl Street operating at a LOS of "C" and Leonard Street at Second Avenue operating at a LOS of "D". Besides these two intersections that have been addressed in section 3.8 of this report, the site generated traffic is not expected to materially impact the operations of the boundary road network.

The proposed Seventy-Six will have approximately 250 parking spaces in the underground garages. Both long-term (25 per building) and short-term (50 on-site) bicycle parking facilities will also be provided as part of the proposed Development Plan. We are fully confident that the number of parking spaces to be provided as part of this development will not only meet the minimum parking requirement, but also provide a low-carbon transportation footprint through emphasis on alternative transportation and a healthier lifestyle.

Considering the scale and scope of the development, it is expected that the full build-out of the proposed site will also benefit from the long-term improvement plans, transit initiatives and sustainable strategies being considered by the City, CDTA and other agencies within the study area.

In addition, the developer is committed to supporting the City to reduce single occupancy vehicle trips and incentivize the use of alternative transportation at the Seventy-Six. To achieve this end, the project is designed to provide site specific connecting infrastructure (bicycle parking, carpool parking, a connected pedestrian network within and around the development) that will be further supported by multi-year partnerships with CDTA, CDPHP Cycle! and 511NY Rideshare/iPool2 to promote best practice sustainable commuting initiatives.

The Seventy-Six will have approximately 250 parking spaces in the underground garages, which meets the minimum parking requirements for this development. The underground parking garage is designed to allow shared parking spaces between the residential and commercial users. All parking spaces will be monitored via a smart digital parking management system.

Construction traffic impact resulting from the Seventy-Six is determined to be low, since the modular construction type is expected to generate significantly less traffic than a conventional construction project. The site is located near I-787 with two alternative haul routes. Since the quantity of on-site construction equipment will be significantly reduced for modular construction, the associated noise, emission & dust impacts will also be greatly reduced.

In summary, the Seventy-Six redevelopment is designed to promote a sustainable future and culture in the South End neighborhood of Albany, and will have minimal impact to traffic, parking, and the environment.

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT
TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process
THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX ATRAFFIC DATA

New York State Department of Transportation

STATION: 112059 Roadway Traffic Count Hourly Report

Month Seasonal

1.08

Sun

1.00

Mon

1.00

Tue

1.00

Wed

1.00

Thu

1.00

Fri

1.00

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST REGION-COUNTY: 1-ALBANY FED DIR CODE: 3,7 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.29 FACTOR GROUP: 30 BIN:

DOT ID: 104573 LANES BY DIR: 1 East 1 West CC STN: RR CROSSING:
BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE:
NOTES 1: EB travel lane PLACEMENT: 50' W of Hummel Terrace î JURISDICTION: 04-City or village 1 WAY CODE:

NOTES 1: EB travel lane PLACEMENT: 50' W of Hummel Terrace î JURISDICTION: 04-City or village 1 WAY CODE: NOTES 2: WB travel lane COUNT TYPE:

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH DATE 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR 5/01, Thu 5/02, Fri 407 17-18 5/03, Sat 318 13-14 5/04, Sun 290 13-14 5/05, Mon 398 17-18 5/06, Tue 399 17-18 5/07, Wed

Vehicle

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon) **AWDT** 123 301 229 252 258 261 370 380 402 352

			E	STIMATI	ED							
DAYS	HOURS	WEEKDAYS	WEEKDAY	Road	way	Eas	st	W	est		AADT	
Counted	Counted	Counted	Hours	High Hour	% of day	High Hour	% of day	High Hour	% of day	Roadway	East	West
6	147	3	81	402	8.4	180	8.1	222	8.7	4424	1956	2260

Axl

1.00

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST

Sat

1.00

Created on: 08/12/2014 8:25 STATION: 112059 PLACEMENT: 50' W of Hummel Terrace î REGION-COUNTY 1-ALBANY DV20 Page 1 of 3

New York State Department of Transportation

EB Traffic Count Hourly Report

Vehicle

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST REGION-COUNTY: 1-ALBANY

FED DIR CODE: 3 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.29 FACTOR GROUP: 30 BIN:

STATION:

5/07, Wed

Month Seasonal

1.08

Sun

1.00

Mon

1.00

Tue

1.00

Wed

1.00

Thu

1.00

Fri

1.00

DOT ID: 104573 LANES BY DIR: 1 East CC STN: RR CROSSING: BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE:

NOTES 1: EB travel lane PLACEMENT: 50' W of Hummel Terrace î JURISDICTION: 04-City or village 1 WAY CODE: NOTES 2: WB travel lane COUNT TYPE:

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR DATE 5/01, Thu 5/02, Fri 174 18-19 5/03, Sat 157 11-12 5/04, Sun 124 14-15 5/05, Mon 180 17-18 5/06, Tue 171 17-18

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon)

AWDT

26 12 5 4 6 18 65 164 153 111 105 108 113 116 111 173 163 180 162 119 100 83 66 48 2211

						AVERAGE W	/EEKDA	Y		E	STIMATI	ED
DAYS	HOURS	WEEKDAYS	WEEKDAY	Road	way	Eas	st	We	est		AADT	
Counted	Counted			High Hour	% of day	High Hour	% of day	High Hour	% of day	Roadway	East	West
6	147	3	81	402	8.4	180	8.1	222	8.7	4424	1956	2260

Axl

1.00

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST

Sat

1.00

Created on: 08/12/2014 8:25 STATION: 112059 PLACEMENT: 50' W of Hummel Terrace î REGION-COUNTY 1-ALBANY DV20 Page 2 of 3

New York State Department of Transportation

WB Traffic Count Hourly Report

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST REGION-COUNTY: 1-ALBANY FED DIR CODE: 7 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.29 FACTOR GROUP: 30 BIN:

STATION:

Month Seasonal

1.08

Sun

1.00

Mon

1.00

Tue

1.00

Wed

1.00

Thu

1.00

Fri

1.00

DOT ID: CC STN: LANES BY DIR: 1 West RR CROSSING: BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE: NOTES 1: EB travel lane PLACEMENT: 50' W of Hummel Terrace î JURISDICTION: 04-City or village 1 WAY CODE:

NOTES 1: EB travel lane PLACEMENT: 30 W of Humiline Terrace 1 JURISDICTION: 04-City of Village 1 WAY CODE.

NOTES 2: WB travel lane COUNT TYPE:

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH DATE 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR 5/01, Thu 152 151 210 5/02, Fri 233 17-18 5/03, Sat 175 13-14 5/04, Sun 178 13-14 5/05, Mon 218 17-18 5/06, Tue 131 127 231 16-17 5/07, Wed

Vehicle

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon)

AWDT

18 19 8 6 7 18 58 138 128 112 118 121 139 142 150 197 217 222 190 165 137 106 78 53 2555

					E	STIMATI	E D					
DAYS	HOURS	WEEKDAYS	WEEKDAY	Road	way	East	t	We	est		AADT	
Counted	Counted	Counted Hours		High Hour	% of day	High Hour 9	% of day Hig	gh Hour	% of day	Roadway	East	West
6	147	3	81	402	8.4	180	8.1	222	8.7	4424	1956	2260

Axl

1.00

ROUTE/ROAD: SECOND AVE FROM: DELAWARE AVE TO: S PEARL ST

Sat

1.00

Created on: 08/12/2014 8:25 STATION: 112059 PLACEMENT: 50' W of Hummel Terrace î REGION-COUNTY 1-ALBANY DV20 Page 3 of 3

328 State St. Schenectady, NY 12305

Region 1 Planning

File Name: 787 Access & 32 N. @ Church_10-16-09_

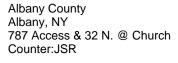
Site Code : 00000000 Start Date : 10/8/2009

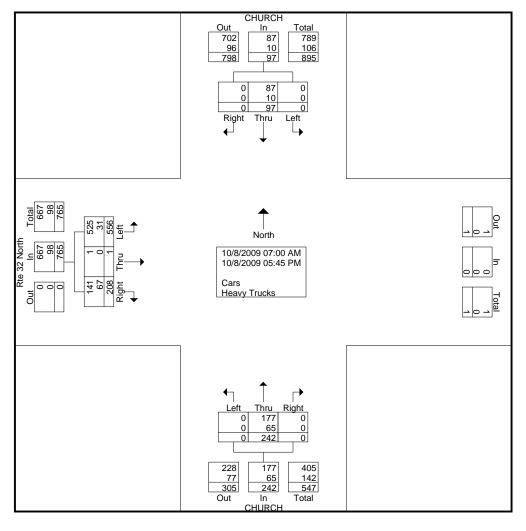
Page No : 1

Albany, NY 787 Access & 32 N. @ Church Counter:JSR

Albany County

Groups Printed- Cars - Heavy Trucks


					Groups 11	initu- Ca	ars - rica	y Huch	100					
		CHU From	IRCH North		From East		CHU From	RCH South			Rte 32 From			
Start Time	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0			1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	0	5	0	5	0	0	6	0	6	16	0	20	36	47
07:15 AM	0	5	0	5	0	0	11	0	11	18	0	30	48	64
07:30 AM	0	2	0	2	0	0	8	0	8	18	0	47	65	75
07:45 AM	0	8	0	8	0	0	14	0	14	28	0	59	87	109
Total	0	20	0	20	0	0	39	0	39	80	0	156	236	295
08:00 AM	0	0	0	0	0	0	9	0	9	9	0	46	55	64
08:15 AM	0	6	0	6	0	0	21	0	21	18	0	49	67	94
08:30 AM	0	6	0	6	0	0	8	0	8	6	0	65	71	85
08:45 AM	0	4	0	4	0	0	14	0	14	13	0	50	63	81
Total	0	16	0	16	0	0	52	0	52	46	0	210	256	324
09:00 AM	0	6	0	6	0	0	13	0	13 **** BREAK	9	0	34 *** ****	43	62
Total	0	6	0	6	0	0	13	0	13	9	0	34	43	62
***** *****	** *****	***** *	**** ***	**** *****	*****	** *****		**** ***		******	**** ***		* ***** **	**** ***** **
04:00 PM	0	6	0	6	0	0	24	0	24	12	0	29	41	71
04:15 PM	0	4	0	4	0	0	17	0	17	9	0	18	27	48
04:30 PM	0	10	0	10	0	0	7	0	7	4	0	29	33	50
04:45 PM	0	10	0	10	0	0	24	0	24	8	0	16	24	58
Total	0	30	0	30	0	0	72	0	72	33	0	92	125	227
05:00 PM	0	3	0	3	0	0	16	0	16	8	1	20	29	48
05:15 PM	0	9	0	9	0	0	18	0	18	8	0	20	28	55
05:30 PM	0	8	0	8	0	0	18	0	18	14	0	9	23	49
05:45 PM	0	5	0	5	0	0	14	0	14	10	0	15	25	44_
Total	0	25	0	25	0	0	66	0	66	40	1	64	105	196
Grand Total	0	97	0	97	0	0	242	0	242	208	1	556	765	1104
Apprch %	0	100	0			0	100	0		27.2	0.1	72.7		
Total %	0	8.8	0	8.8	0	0	21.9	0	21.9	18.8	0.1	50.4	69.3	
Cars	0	87	0	87	0	0	177	0	177	141	1	525	667	931
% Cars	0	89.7	0	89.7	0	0	73.1	0	73.1	67.8	100	94.4	87.2	84.3
Heavy Trucks	0	10	0	10	0	0	65	0	65	67	0	31	98	173
% Heavy Trucks	0	10.3	0	10.3	0	0	26.9	0	26.9	32.2	0	5.6	12.8	15.7

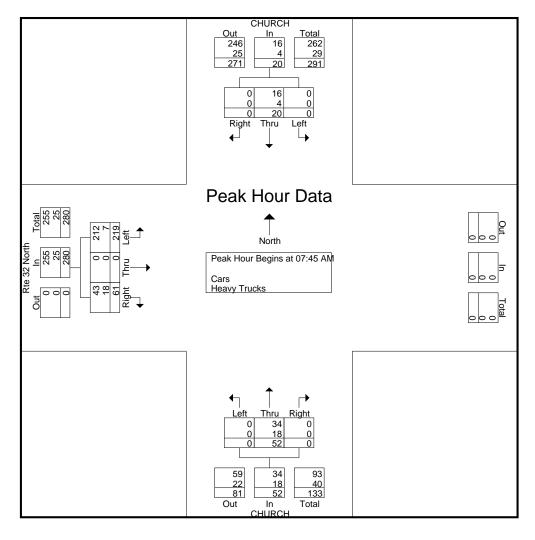

328 State St. Schenectady, NY 12305

Region 1 Planning

File Name: 787 Access & 32 N. @ Church_10-16-09_

Site Code : 00000000 Start Date : 10/8/2009

328 State St. Schenectady, NY 12305


Region 1 Planning

File Name: 787 Access & 32 N. @ Church_10-16-09_

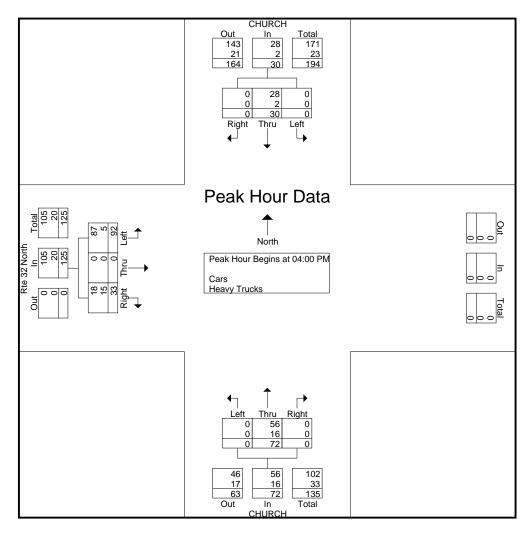
Site Code : 00000000 Start Date : 10/8/2009

Albany County
Albany, NY
787 Access & 32 N. @ Church
Counter:JSR

			RCH North		From East			JRCH South			Rte 32 From			
Start Time	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1														
Peak Hour for Entire Intersection Begins at 07:45 AM														
07:45 AM	0	8	0	8	0	0	14	0	14	28	0	59	87	109
08:00 AM	0	0	0	0	0	0	9	0	9	9	0	46	55	64
08:15 AM	0	6	0	6	0	0	21	0	21	18	0	49	67	94
08:30 AM	0	6	0	6	0	0	8	0	8	6	0	65	71	85
Total Volume	0	20	0	20	0	0	52	0	52	61	0	219	280	352
% App. Total	0	100	0			0	100	0		21.8	0	78.2		
PHF	.000	.625	.000	.625	.000	.000	.619	.000	.619	.545	.000	.842	.805	.807
Cars	0	16	0	16	0	0	34	0	34	43	0	212	255	305
% Cars	0	80.0	0	80.0	0	0	65.4	0	65.4	70.5	0	96.8	91.1	86.6
Heavy Trucks	0	4	0	4	0	0	18	0	18	18	0	7	25	47
% Heavy Trucks	0	20.0	0	20.0	0	0	34.6	0	34.6	29.5	0	3.2	8.9	13.4

328 State St. Schenectady, NY 12305

Region 1 Planning


Albany, NY 787 Access & 32 N. @ Church Counter:JSR

Albany County

File Name: 787 Access & 32 N. @ Church_10-16-09_

Site Code : 00000000 Start Date : 10/8/2009

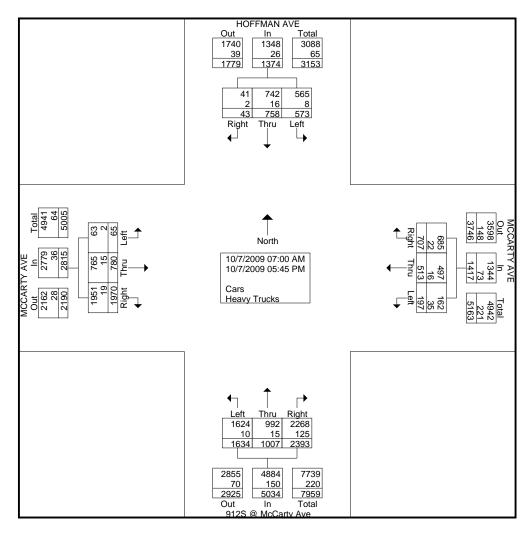
		CHU From			From East	st From South From West								
Start Time	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis	From 12:00	PM to 05:	45 PM - F	Peak 1 of 1										
Peak Hour for Entire Intersection Begins at 04:00 PM														
04:00 PM	0	6	0	6	0	0	24	0	24	12	0	29	41	71
04:15 PM	0	4	0	4	0	0	17	0	17	9	0	18	27	48
04:30 PM	0	10	0	10	0	0	7	0	7	4	0	29	33	50
04:45 PM	0	10	0	10	0	0	24	0	24	8	0	16	24	58
Total Volume	0	30	0	30	0	0	72	0	72	33	0	92	125	227
% App. Total	0	100	0			0	100	0		26.4	0	73.6		
PHF	.000	.750	.000	.750	.000	.000	.750	.000	.750	.688	.000	.793	.762	.799
Cars	0	28	0	28	0	0	56	0	56	18	0	87	105	189
% Cars	0	93.3	0	93.3	0	0	77.8	0	77.8	54.5	0	94.6	84.0	83.3
Heavy Trucks	0	2	0	2	0	0	16	0	16	15	0	5	20	38
% Heavy Trucks	0	6.7	0	6.7	0	0	22.2	0	22.2	45.5	0	5.4	16.0	16.7

328 State St. Schenectady, NY 12305 Region 1 Planning

Albany County Albany,NY Rte 912S @ McCarty Ave. Counter:JSR File Name : 912S @ McCarty Ave_10-16-09_

Site Code : 00000000 Start Date : 10/7/2009

Page No : 1

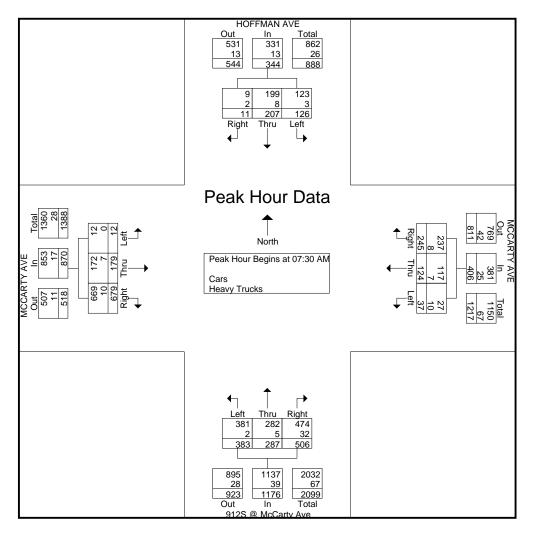

Groups Printed- Cars - Heavy Trucks

								ea- Cars									
	I	HOFFM	IAN A	VE	MCC	CARTY	AVE		912	S @ Mo	Carty	Ave	MCC	CARTY	AVE		
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	1	30	23	54	36	22	5	63	131	43	58	232	78	38	3	119	468
07:15 AM	1	28	34	63	48	32	10	90	133	55	78	266	125	44	1	170	589
07:30 AM	4	61	33	98	82	32	9	123	132	89	114	335	136	37	1	174	730
07:45 AM	1	59	32	92	72	37	9	118	113	92	116	321	200	43	4	247	778
Total	7	178	122	307	238	123	33	394	509	279	366	1154	539	162	9	710	2565
													ı				
08:00 AM	4	45	29	78	48	23	11	82	140	59	79	278	171	57	2	230	668
08:15 AM	2	42	32	76	43	32	8	83	121	47	74	242	172	42	5	219	620
08:30 AM	7	44	18	69	36	42	8	86	103	55	66	224	142	46	5	193	572
08:45 AM	2	43	22	67	38	34	8	80	81	48	69	198	134	37	3	174	519
Total	15	174	101	290	165	131	35	331	445	209	288	942	619	182	15	816	2379
***** *****	***** **	****	*** ***	*** *****	* *****	*****	*****	*****	**** ***	*** ***	** BRE	AK *****	*****	*****	*****	*****	*** ****** *
	1 .								٠						_		
04:00 PM	1	55	45	101	32	37	17	86	173	64	121	358	113	50	2	165	710
04:15 PM	2	45	47	94	36	34	19	89	174	55	128	357	86	34	5	125	665
04:30 PM	3	44	41	88	48	39	12	99	178	70	108	356	122	68	4	194	737
04:45 PM	3	57	50	110	36	40	21	97	155	50	118	323	95	68	8	171	701
Total	9	201	183	393	152	150	69	371	680	239	475	1394	416	220	19	655	2813
05 00 DM	۔ ا	40	24	07	40	21	0	0.1	202	02	146	422	101	16	7	154	754
05:00 PM 05:15 PM	5 2	48 52	34 49	87 103	42 45	31 19	8 21	81 85	203 189	83 49	146 143	432 381	101 115	46 61	7 5	154 181	754 750
	4	52 41	49 51	96	33	34	21 17	85 84	189	49 80	102		95	53	5 6	154	
05:30 PM	4	64	33	96 98	33	34 25		71		80 68	102	362 369	95 85		4		696
05:45 PM	12	205	<u>33</u> 167	384	152	109	14 60	321	187 759	280		1544	396	56 216	22	145 634	683
Total	12	205	107	384	152	109	60	321	/39	280	505	1544	390	210	22	034	2883
Grand Total	43	758	573	1374	707	513	197	1417	2393	1007	1634	5034	1970	780	65	2815	10640
	3.1	55.2	41.7	13/4	49.9	36.2	13.9	1417	47.5	20	32.5	3034	70	27.7	2.3	2013	10040
Apprch % Total %	0.4	55.2 7.1	5.4	12.9	49.9 6.6	30.2 4.8	13.9	13.3	22.5	20 9.5	32.3 15.4	47.3	18.5	7.3	0.6	26.5	
10tal % Cars	41	7.1	5.4 565	1348	685	4.8 497	162	13.3	22.5	9.5	1624	47.3	1951	7.5	63	2779	10355
Cars % Cars	95.3	97.9	98.6	98.1	96.9	497 96.9	82.2	94.8	94.8	992 98.5	99.4	4884 97	1951	765 98.1	96.9	98.7	97.3
Heavy Trucks	95.3	97.9 16	<u>98.6</u> 8	98.1	22	96.9 16	35	<u>94.8</u> 73	125	98.5 15	99.4 10	150	19	98.1 15	96.9 2	<u>98.7</u> 36	285
•	4.7	2.1	1.4	1.9	3.1	3.1	17.8	5.2	5.2	1.5	0.6	3	19	1.9	3.1	1.3	283
% Heavy Trucks	4./	∠.1	1.4	1.9	3.1	5.1	17.8	3.2	3.2	1.3	0.0	3	1	1.9	5.1	1.3	2.1

328 State St. Schenectady, NY 12305 Region 1 Planning

Albany County Albany,NY Rte 912S @ McCarty Ave. Counter:JSR File Name: 912S @ McCarty Ave_10-16-09_

Site Code : 00000000 Start Date : 10/7/2009

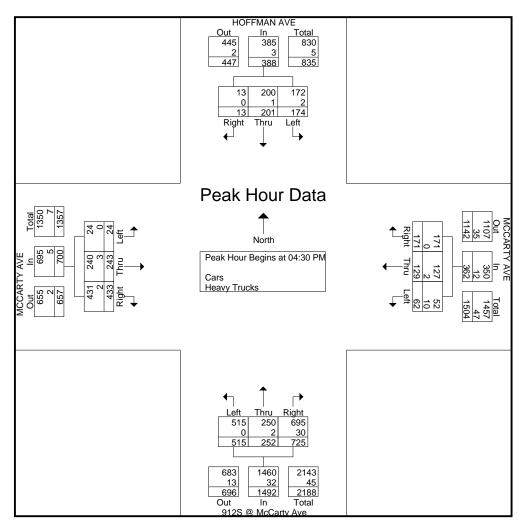


328 State St. Schenectady, NY 12305 *Region 1 Planning*

Albany County Albany,NY Rte 912S @ McCarty Ave. Counter:JSR File Name: 912S @ McCarty Ave_10-16-09_

Site Code : 00000000 Start Date : 10/7/2009

	1																
	I	HOFFM	IAN AV	VE	MC	CARTY	AVE		912	S @ Mo	Carty .	Ave	MC	CARTY	AVE		
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analys	Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1																
Peak Hour for Entire Intersection Begins at 07:30 AM																	
07:30 AM	4	61	33	98	82	32	9	123	132	89	114	335	136	37	1	174	730
07:45 AM	1	59	32	92	72	37	9	118	113	92	116	321	200	43	4	247	778
08:00 AM	4	45	29	78	48	23	11	82	140	59	79	278	171	57	2	230	668
08:15 AM	2	42	32	76	43	32	8	83	121	47	74	242	172	42	5	219	620
Total Volume	11	207	126	344	245	124	37	406	506	287	383	1176	679	179	12	870	2796
% App. Total	3.2	60.2	36.6		60.3	30.5	9.1		43	24.4	32.6		78	20.6	1.4		
PHF	.688	.848	.955	.878	.747	.838	.841	.825	.904	.780	.825	.878	.849	.785	.600	.881	.898
Cars	9	199	123	331	237	117	27	381	474	282	381	1137	669	172	12	853	2702
% Cars	81.8	96.1	97.6	96.2	96.7	94.4	73.0	93.8	93.7	98.3	99.5	96.7	98.5	96.1	100	98.0	96.6
Heavy Trucks	2	8	3	13	8	7	10	25	32	5	2	39	10	7	0	17	94
% Heavy Trucks	18.2	3.9	2.4	3.8	3.3	5.6	27.0	6.2	6.3	1.7	0.5	3.3	1.5	3.9	0	2.0	3.4



328 State St. Schenectady, NY 12305 *Region 1 Planning*

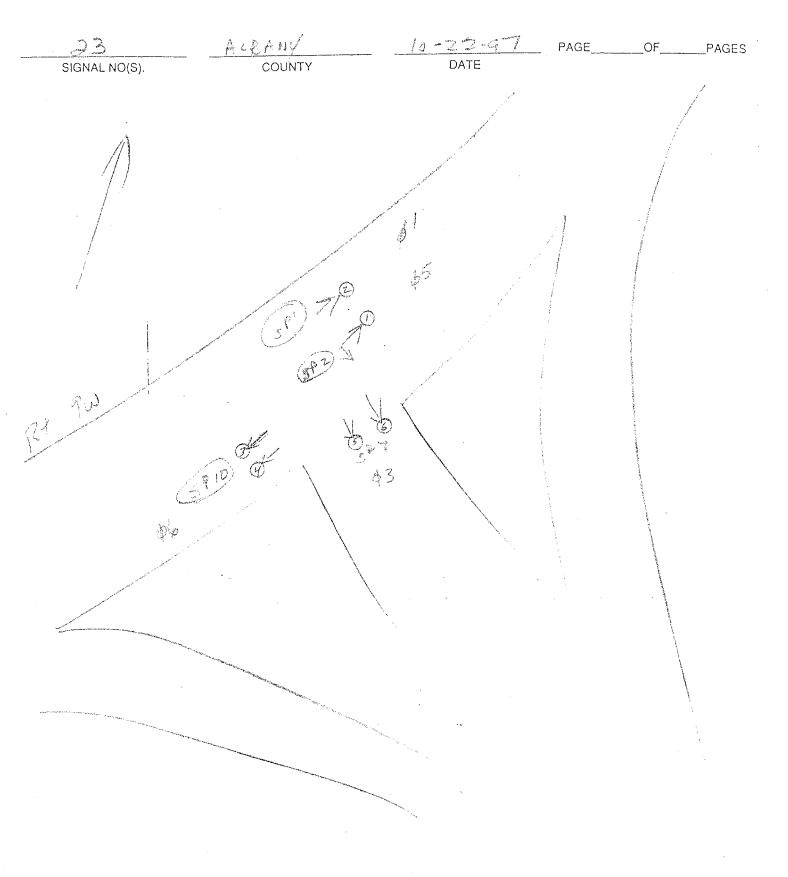
Albany County Albany,NY Rte 912S @ McCarty Ave. Counter:JSR File Name: 912S @ McCarty Ave_10-16-09_

Site Code : 00000000 Start Date : 10/7/2009

																	1
	I	HOFFM	IAN A	VE	MC	CARTY	AVE		912	S @ Mo	cCarty	Ave	MC	CARTY	AVE		
		From	North			Fron	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analys	Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1																
Peak Hour for Entire Intersection Begins at 04:30 PM																	
04:30 PM	3	44	41	88	48	39	12	99	178	70	108	356	122	68	4	194	737
04:45 PM	3	57	50	110	36	40	21	97	155	50	118	323	95	68	8	171	701
05:00 PM	5	48	34	87	42	31	8	81	203	83	146	432	101	46	7	154	754
05:15 PM	2	52	49	103	45	19	21	85	189	49	143	381	115	61	5	181	750
Total Volume	13	201	174	388	171	129	62	362	725	252	515	1492	433	243	24	700	2942
% App. Total	3.4	51.8	44.8		47.2	35.6	17.1		48.6	16.9	34.5		61.9	34.7	3.4		
PHF	.650	.882	.870	.882	.891	.806	.738	.914	.893	.759	.882	.863	.887	.893	.750	.902	.975
Cars	13	200	172	385	171	127	52	350	695	250	515	1460	431	240	24	695	2890
% Cars	100	99.5	98.9	99.2	100	98.4	83.9	96.7	95.9	99.2	100	97.9	99.5	98.8	100	99.3	98.2
Heavy Trucks	0	1	2	3	0	2	10	12	30	2	0	32	2	3	0	5	52
% Heavy Trucks	0	0.5	1.1	0.8	0	1.6	16.1	3.3	4.1	0.8	0	2.1	0.5	1.2	0	0.7	1.8

9WC CORNING HILL

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION


Study:

Contract:

P.I.N.:

File:

TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED)

TE 55 /0.00

1	Phase Times [1.1.1]									Coordinati	ion Pat	terns	[2.4]	and C	oordin	ation S	Split Ta	ables	2.7.1														
1023 1023 1024 1024 1025		1	2	3	4	5	6	7	_			_	-				•			Pat#	Cvc	Off	Split	Sea	Pat#	Cvc	Off	Split	Sea				
Case East Case	Min Green					-	-			1								_	_	_	Ė	-	-				_	_	_		10	123	
Max		_								2			_	_			_				_	_					_					20	
MAY Collegations MAY Co														_	_		-			_	_												
Ya Cilearmone A						_					0		_				-	_			0	_				-		-		Ring/S	Startu	p [1.1.4	1
Red Claiman Can Mark Mark Mark Mark Mark Mark Mark Mark		4	4	4	4	4	4	4	4	5	0	-	_	_							0	_											
Walk Pack Cleaning C	Red Clearance		1	1	1	_	1	1	1	6	0			1		0	0		1	_	0	0	0	1	42	0	0		1		Ť		
Real Real Act Fine										7	0	0		1	_	0	0		1	_	0	0	0	1	_	0	0	0	1	2	1	RED	
Add Install Add Shall May Install May Install May Inst	Ped Clearance									8	0	0	8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	On
Max Indeed Max	Red Revert									9	0	0	9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	Off
Time Packed Memory	Add Initial									10	0	0	10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	RED	On
Cars B4 Reduct. Cars B4 Reduct. Cars B4 Re	Max Initial									11	0	0	11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	On
Time To Reduce Color Col	Time B4 Reduct									12	0	0	12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Off
Reduce By Redu	Cars B4 Reduct									Split		1	2	3	4	5	6	7	8	Split		1	2	3	4	5	6	7	8	8	2	RED	Off
Min Gap 1	Time To Reduce									1	Coor	0	0	0	0	0	0	0	0	13	Coor	0	0	0	0	0	0	0	0	Coord	Modes	[2.1]	
Description	Reduce By											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Test OpN	lode	0	
Max Siep	Min Gap									2	Coor	120	0	30	0	20	120	0	0	14	Coor	0	0	0	0	0	0	0	0	Correction	n	SHRT/LNG	
Price Pric	DyMaxLim											MIN	NON	NON	NON	NON	MIN	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Maximum		MAX 1	
Finable On On On On On On On O	Max Step									3	Coor	0	0	0	0	0	0	0	0	15	Coor	0	0	0	0	0	0	0	0	Force-Off		FLOAT	
Min Recall On Control On Control On Control On On On On On On On O	Options [1.1.2]	1	2	3	4	5	6	7	8			NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Closed Lo	оор	ON	
Max Recall Max	Enable	On		On		On	On			4	Coor	0	0	0	0	0	0	0	0	16	Coor	0	0	0	0	0	0	0	0	Stop-in-W	/alk	ON	
Max Recall Max	Min Recall	On					On					NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Res	et	ON	
Soft Recall Cock Calls Con Con Con Con Con Cock Calls	Max Recall									5	Coor	0	0	0	0					17	Coor	0	0	0	0	0	0	0	0	Expand S	plt	OFF	
Soft Recall Cock Calls Con Con Con Con Con Cock Calls	Ped Recall											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Ped Recy	cle	NO_RECYC	CLE
Auto Flash Entry Auto Flash Entry Auto Flash Entry Auto Flash Entry Auto Flash Exit Auto F	Soft Recall									6	Coor	-		1		0	_		_	18	Coor	_					-					TIMED	
Auto Flash Entry Auto Flash Exit Auto Flash Ex	Lock Calls	On		On			On					NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	After		TIMED	
Auto Flash Exit Column C										7	Coor			_			_	_	_	19	Coor	_	†				-				ash [1.	4.1]	
Dual Entry Dua	,											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Flas	h .	PH OVER	
Page	Dual Entry		On		On		On		On	8	Coor	0	0	0	0	0	0	0	0	20	Coor	0	0	0	0	0	0	0	0	Flash Yel		40	
Gaurantee Passage Gaurantee Pas		On	On	On	On	On	On	On	_			NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Flash Red	i	10	
Rest in Walk Condition Service Condition										9	Coor	_	_	_						21	Coor	_				-	-					1.2.11	
Condition Service Non-Actuated 1 Non-Actuated 2 Non-Actuated 2 Add Init Calc Options+[1.1.3] 1 2 3 4 5 6 7 8 Reservice Non-Non Non Non Non Non Non Non Non Non Non												NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	_				
Non-Actuated 1	Conditon Service									10	Coor	_		_			_			22	Coor		 		0	0	\vdash					USER	
Non-Actuated 2												NON		NON	NON	NON	NON	NON	_	1	-	_	NON	NON	NON	NON	NON	NON	NON		Start	RED	
Add Init Calc Add Init Calc										11	Coor	_		_		_	_		_	23	Coor		 		0		\vdash					0	
Options+ [1.1.3] 1 2 3 4 5 6 7 8 12 Coor 0												_	NON	NON	NON	NON		NON			-	NON	NON	NON	NON	NON	NON		_		(-)	6	
Reservice Reservice Reservice Red Revert Red		1	2	3	4	5	6	7	8	12	Coor	_	_			_		_		24	Coor						-				` '	OFF	
PedCIr Thru Yel Red Revert 3 Skip Red No Call 1 8 Phase Times/Options; Patterns/Splits; Ring Startup; Coord/Flash Mode; Unit Param MCE Timeout 0 Red Rest 1 1A&1B 16 Phase Times/Options; Patterns/Splits; Ring Startup; Coord/Flash Mode; Unit Param Feature Profile 0 Max II 2 Overlaps; Channel Settings; Coord Alt Table+ (values not associated with time-of-day) Free Ring Seq 1 Call Phase 3 Detection; Sample Time and Unit Parameters related to detection Auxswitch STOPTM Conflicting Phase 3 Detection; Sample Time and Phase Options SDLC Retry 0 Omit Yellow 4 Preemption and Alternate Phase Time and Phase Options SDLC Retry 0 Omit Yellow 5 Annual Schedule TS2 Det Faults ON Ped Delay 6 Day Plans; Action Tables; Coord Alt Table+ (values varied by time-of-day) Auto Ped Clear OFF Grn/Ped Delay 7 Communications; Secutiry; I/O Setup SDLC Retry 0							Ť									,																40	
Skip Red No Call Red Rest Red Rest Detection; Semple Time and Unit Parameters related to detection Auxswitch Conflicting Phase Detection; Sample Time and Unit Parameters related to detection Conflicting Phase Detection; Sample Time and Unit Parameters related to detection Conflicting Phase Detection; Sample Time and Unit Parameters related to detection Conflicting Phase Detection; Sample Time and Unit Parameters related to detection Conflicting Phase Detection; Sample Time and Phase Options SDLC Retry Comit Yellow Detection; Sample Time and Phase Options SDLC Retry Comit Yellow Detection; Sample Time and Phase Options SDLC Retry Comit Yellow Detection; Sample Time and Phase Options SDLC Retry Comit Yellow Detection; Sample Time and Phase Options SDLC Retry Communications; Secutiry; I/O Setup SDLC Retry Offer Communications; Secutiry; I/O Setup SDLC Retry Offer Communications; Secutiry; I/O Setup										Page	#	NON	NON	itoit	HOR	NON	itoit	NON	NON			NON	itoit	NON	HOR	NON	NON	HOIL	HOR			3	
Red Rest											π	Ω D	haco	Timo	s/Onti	one: D	attorn	c/Snli	tc: D	ina S	tartur	· Co	ord/El-	ach M	lodo: l	I Init D	aram					0	
Max II 2 Overlaps; Channel Settings; Coord Alt Table+ (values not associated with time-of-day) Free Ring Seq 1 Call Phase 3 Detection; Sample Time and Unit Parameters related to detection Auxswitch STOPTM Conflicting Phase 4 Preemption and Alternate Phase Time and Phase Options SDLC Retry 0 Omit Yellow 5 Annual Schedule Ts2 Det Faults ON Ped Delay 6 Day Plans; Action Tables; Coord Alt Table+ (values varied by time-of-day) Auto Ped Clear OFF Grn/Ped Delay 5 Communications; Secutiry; I/O Setup SDLC Retry 0										-	R	_																				0	
Call Phase 3 Detection; Sample Time and Unit Parameters related to detection Auxswitch STOPTM Conflicting Phase 4 Preemption and Alternate Phase Time and Phase Options SDLC Retry 0 Omit Yellow 5 Annual Schedule Ts2 Det Faults ON Ped Delay 6 Day Plans; Action Tables; Coord Alt Table+ (values varied by time-of-day) Auto Ped Clear OFF Grn/Ped Delay 7 Communications; Secutiry; I/O Setup SDLC Retry 0						\vdash	\vdash		\vdash						_			_		_	_											1	
Conflicting Phase						\vdash	\vdash		\vdash															atou W	nun ull	10 01-0	uuy)					STOPTM	
Omit Yellow 5 Annual Schedule TS2 Det Faults ON Ped Delay 6 Day Plans; Action Tables; Coord Alt Table+ (values varied by time-of-day) Auto Ped Clear OFF Grn/Ped Delay 7 Communications; Secutiry; I/O Setup SDLC Retry 0						\vdash	\vdash	\vdash	\vdash			_											,50001										
Ped Delay						\vdash	\vdash						_							.1400	Optil										,		
Grn/Ped Delay 7 Communications; Secutiry; I/O Setup SDLC Retry 0								t								oles: (Coord	Alt Ta	ble+	(valu	es va	ried h	v time	of-da	av)								
						T	T	t												1.2.0			,	J. 40	11								
		Rou	ite 9	W @	Cor	nino	Hill p	i	_									_	ect:	P/OL	AP A	uto FI	ash: (CIC:	Misc l	Jnit P	aram					Pag	e 1

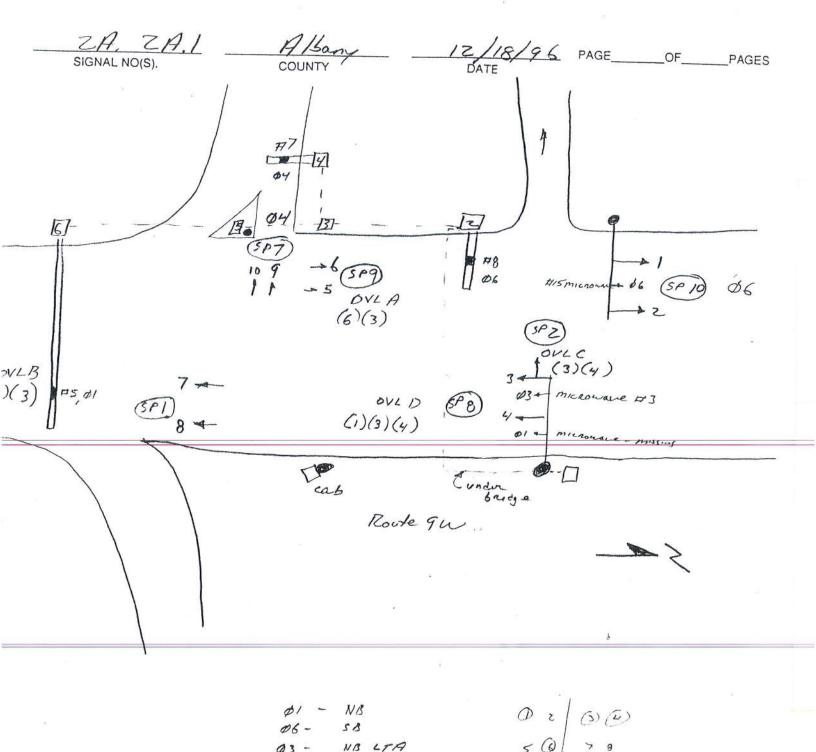
9we McCarthy STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION Study: TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED) Contract: P.I.N .: File: 1116 ALBANY SIGNAL NO(S). PAGE OF PAG DATE Packing Lot \$P13) 9w 4) pp \$2. 9W (SP10) \$6 13 1 63 SP13 TE 5b (8/82)

- thy

Phase Times [1.1.1]									Coordinati	ion Pat	terns	[2.4]	and C	oordin	ation S	Split Ta	ables	2.7.1														
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#		Off	Split		Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq				
Min Green		20				20		1	1	0	0	1	1	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1		11	16	
Gap, Ext	2	4	2	2		4			2	0	0	2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1		• '		
Max 1	10	80	25	30		80			3	0	0	3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1				
Max 2									4	0	0	4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring/S	Startu	p [1.1.4	1
Yel Clearance	4	4	4	4	4	4	4	4	5	0	0	5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1	Phs	Ring	Start	Enable
Red Clearance	1	1	1	1	1	1	1	1	6	0	0	6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	RED	On
Walk			7						7	0	0	7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	On
Ped Clearance			22						8	0	0	8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	On
Red Revert									9	0	0	9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	On
Add Initial									10	0	0	10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	RED	Off
Max Initial									11	0	0	11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	On
Time B4 Reduct									12	0	0	12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Off
Cars B4 Reduct									Split		1	2	3	4	5	6	7	8	Split		1	2	3	4	5	6	7	8	8	2	RED	Off
Time To Reduce									1	Coor	0	0	0	0	0	0	0	0	13	Coor	0	0	0	0	0	0	0	0	Coord I	Vodes	[2.1]	
Reduce By											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Test OpM	ode	0	
Min Gap									2	Coor	0	0	0	0	0	0	0	0	14	Coor	0	0	0	0	0	0	0	0	Correction	1	SHRT/LNG	i
DyMaxLim											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Maximum		MAX 1	
Max Step									3	Coor	0	0	0	0	0	0	0	0	15	Coor	0	0	0	0	0	0	0	0	Force-Off		FLOAT	
Options [1.1.2]	1	2	3	4	5	6	7	8			NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Closed Lo	ор	ON	
Enable	On	On	On	On		On			4	Coor	0	0	0	0	0	0	0	0	16	Coor	0	0	0	0	0	0	0	0	Stop-in-W	/alk	ON	
Min Recall		On				On					NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Rese	et	ON	
Max Recall									5	Coor	0	0	0	0	0	0	0	0	17	Coor	0	0	0	0	0	0	0	0	Expand S	plt	OFF	
Ped Recall											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Ped Recy	cle	NO_RECYC	CLE
Soft Recall									6	Coor	0	0	0	0	0	0	0	0	18	Coor	0	0	0	0	0	0	0	0	Before		TIMED	
Lock Calls											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	After		TIMED	
Auto Flash Entry									7	Coor	0	0	0	0	0	0	0	0	19	Coor	0	0	0	0	0	0	0	0	Auto FI	ash [1.	4.1]	
Auto Flash Exit											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Flas	h	PH OVER	
Dual Entry		On		On		On		On	8	Coor	0	0	0	0	0	0	0	0	20	Coor	0	0	0	0	0	0	0	0	Flash Yel		40	
Enable Simul Gap	On	On	On	On	On	On	On	On			NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Flash Red	i	10	
Gaurantee Passage									9	Coor	0	0	0	0	0	0	0	0	21	Coor	0	0	0	0	0	0	0	0	Unit Pa	rams [1.2.11	
Rest In Walk											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	_	Phase Mo		STD8	
Conditon Service									10	Coor	0	0	0	0	0	0	0	0	22	Coor	0	0	0	0	0	0	0	0	IO Mode		USER	
Non-Actuated 1			\vdash				\vdash				NON	NON	NON	NON	NON	NON	·				_	Ľ		NON	_	NON	·	_	Loc Fish S	Start	RED	
Non-Actuated 2							\vdash		11	Coor	0	0	0	0	0	0	0	0	23	Coor	0	0	0	0	0	0	0	0	Start Flas		0	
Add Init Calc					t	t	\vdash	\vdash			NON	Ů	NON	Ľ	•			-			_	Ľ		·	_	·	·	_	Start AllR	()	6	
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor	0	0	0	0	0	0	0	0	24	Coor		0	0	0	0	0	0		Yellow < 3	- (-)	OFF	
Reservice					Ť	Ť		Ť					-	-	NON					- 301									Display Ti		40	
PedClr Thru Yel			\vdash			\vdash	\vdash		Page																				Red Reve		3	
Skip Red No Call			\vdash	\vdash			\vdash	\vdash	1	л	ΩГ	hase	Time	e/Onti	ons; P	attorn	e/Cnli	te: D	ing C	tartur). Co	ord/El	ach M	oda: I	Init D	aram			MCE Time	11	0	
Red Rest			\vdash	\vdash			\vdash	\vdash	1A&1	B	_				ons; P														Feature P	_	0	
Max II					\vdash	\vdash	\vdash	\vdash	2					_	ettings		_		_	_									Free Ring	101110	1	
Call Phase			\vdash			\vdash	\vdash		3						me an								ateu W	iui uii	10-01-0	uay)			Auxswitch		STOPTM	
Conflicting Phase									4		_			_	nate P							JOUOIT							SDLC Re		0	
Omit Yellow					\vdash	\vdash	\vdash	\vdash	5		_	_	hedu		iiuio i			ariu I	11450	Opiic	,, IU								TS2 Det F		ON	
Ped Delay					\vdash	\vdash	\vdash	\vdash	6		_				oles; (Coord	Alt Ta	ble+	(valu	es va	ried h	v time	-of-da	av)					Auto Ped		OFF	
Grn/Ped Delay							\vdash		7						cutiry:				, , , , , ,	55 YU		,	. J. UL	-J/					SDLC Re		0	
1116	Rou	ite 9	w @	Mc	Cart	У		<u> </u>	8						Call/l			ect:	P/OL	AP Aı	uto FI	ash: (CIC: I	Misc l	Jnit Pa	aram			05/20		Pag	e 1
						_								,	,			• ;		"		,	,									

THROWAY

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION


TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED)

Study:

Contract:

P.I.N .:

File:

Gxit Ramo

Phase Times [1.1.1]								Cod	ordina	tion F	Patter	ns [2.	4] and	d Coo	rdina	tion S	Split T	ables	s [2.7	.1]											
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq				
Min Green	15		5	10		15			1	0	0	1	1	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1		ST	⁻ D8	
Gap, Ext	5		2	4		5			2	0	0	2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1		•		
Max 1	60		25	50		80			3	0	0	3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1				
Max 2									4	0	0	4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring	/Start	up [1.	1.4]
Yel Clearance	4	4	4	4	4	4	4	4	5	0	0	5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1		Ring		Enable
Red Clearance	1	1	1	1	1	1	1	1	6	0	0	6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	RED	On
Walk									7	0	0	7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	Off
Ped Clearance									8	0	0	8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	On
Red Revert									9	0	0	9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	On
Add Initial	3			3		3			10	0	0	10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	RED	Off
Max Initial	20			15		20			11	0	0	11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	On
Time B4 Reduct									12	0	0	12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Off
Cars B4 Reduct									Spli	t	1	2	3	4	5	6	7	8	Split	t	1	2	3	4	5	6	7	8	8	2	RED	Off
Time To Reduce									1	Coor	0	0	0	0	0	0	0	0		Coor	0	0	0	0	0	0	0	0	Coord	d Mode		
Reduce By											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Test Op	oMode	0	
Min Gap									2	Coor	60	0	25	50	0	80	0	0	14	Coor	0	0	0	0	0	0	0	0	Correct	ion	SHRT/LN	IG
DyMaxLim												NON	NON	NON	NON	MIN	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Maximu	ım	MAX 1	
Max Step									3	Coor	0	0	0	0	0	0	0	0	15	Coor	0	0	0	0	0	0	0	0	Force-C	Off	FLOAT	
Options [1.1.2]	1	2	3	4	5	6	7	8	1		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Closed	Loop	ON	
Enable	On		On	On		On			4	Coor	0	0	0	0	0	0	0	0	16	Coor	0	0	0	0	0	0	0	0	Stop-in-	-Walk	ON	
Min Recall	On					On			1		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Re	eset	ON	
Max Recall									5	Coor	0	0	0	0	0	0	0	0	17	Coor	0	0	0	0	0	0	0	0	Expand	l Splt	OFF	
Ped Recall											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Ped Re	cycle	NO_REC	YCLE
Soft Recall									6	Coor	0	0	0	0	0	0	0	0	18	Coor	0	0	0	0	0	0	0	0	Before		TIMED	
Lock Calls			On	On					1		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	After		TIMED	
Auto Flash Entry									7	Coor	0	0	0	0	0	0	0	0	19	Coor	0	0	0	0	0	0	0	0	Auto	Flash [1.4.1]	
Auto Flash Exit									1		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Auto Fla	ash	PH OVER	₹
Dual Entry		On		On		On		On	8	Coor	0	0	0	0	0	0	0	0	20	Coor	0	0	0	0	0	0	0	0	Flash Y	'el	40	
Enable Simul Gap	On	On	On	On	On	On	On	On			NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Flash R	Red	0	
Gaurantee Passage									9	Coor	0	0	0	0	0	0	0	0	21	Coor	0	0	0	0	0	0	0	0	Unit F	Params	[1.2.1]	
Rest In Walk											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Phase I	Mode	STD8	
Conditon Service									10	Coor	0	0	0	0	0	0	0	0	22	Coor	0	0	0	0	0	0	0	0	IO Mod	е	USER	
Non-Actuated 1											NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Loc Fls	h Start	RED	
Non-Actuated 2									11	Coor	0	0	0	0	0	0	0	0	23	Coor	0	0	0	0	0	0	0	0	Start Fl	ash(s)	0	
Add Init Calc									L		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Start Al	IRed(s)	6	
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor		0	0	0	0	0	0	0		Coor		0	0	0	0	0	0	·	Yellow		OFF	
Reservice									L		NON	NON	NON	NON	NON	NON	NON	NON			NON	NON	NON	NON	NON	NON	NON	NON	Display	Time	40	
PedClr Thru Yel									Pa	ige#																			Red Re		3	
Skip Red No Call										1	8 P	hase	Time	s/Op	tions;	Patt	erns/	'Splits	; Rii	ng St	artup	; <u>C</u> o	ord/FI	ash N	lode;	Unit	Para	m	MCE Ti	imeout	0	
Red Rest									1/	&1B	16 P	hase	Time	s/Op	tions;	Patt	erns/	Splits	; Rii	ng St	artup	; Co	ord/FI	ash N	lode;	Unit	Para	m	Feature	Profile	0	
Max II										2	Ove	rlaps;	Cha	nnel	<u>Setti</u> n	gs; (Coord	T IIA b	able	+ (va	lues	not a	ssocia	ated v	vith tii	me-of	f-day)	Free Ri	ng Seq	1	
Call Phase										3	Dete	ction	; Sar	nple ⁻	Time a	and L	Jnit P	aram	eters	s rela	ted to	dete	ction						Auxswi	tch	STOPTM	
Conflicting Phase										4	Pree	mptio	n an	d Alte	rnate	Phas	se Tir	me an	ıd Ph	nase	Optio	ns							SDLC F	Retry	0	
Omit Yellow										5	Annı	ual So	chedu	ıle															TS2 De	t Faults	ON	
Ped Delay										6					ables;	Coc	ord A	lt Tab	le+ (value	es var	ied b	y time	e-of-da	ay)					ed Clear		
Grn/Ped Delay										7	_				ecutir				,										SDLC F		0	
ID: 1902	Route	9W E	xit 23	T-Way	1					8								Redire	ct; F	P/OLA	AP Au	ıto Fl	ash;	CIC;	Misc	Unit	Parai	n	03/1		Pag	je 1

DATE OF COUNT: 08/03/2016

NOTES LANE 1: NB travel lane

S

S

Μ

Т

W Т

F

S

S

Μ

Т

W

Τ

F

S

S

Μ

Т

W

13

14 15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

Albany

New York State Department of Transportation

Traffic Count Hourly Report

ROAD #: ROAD NAME: FRISBIE AVE

DIRECTION: Northbound STATE DIR CODE: 6

FACTOR GROUP: 30 WK OF YR: 32

FROM: MCCARTY AVE REC. SERIAL #: CN65

TO: SECOND AVE FUNC. CLASS: 16 PLACEMENT: 275' S of Avenue B

@ REF MARKER: ADDL DATA: Class Speed COUNT TYPE: AXLE PAIRS NHS: no JURIS: County CC Stn:

BATCH ID: DOT-R01C32aTST5195HPMS SAMPLE:

LION#: BIN: RR CROSSING:

COUNTY:

CITY:

COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK PROCESSED BY: ORG CODE: DOT INITIALS: KCF

12 2 5 6 8 9 10 3 6 10 11 11 12 5 8 TO **DAILY** DAILY 4 5 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 **DAILY** HIGH HIGH PM

DATE DAY TOTAL COUNT HOUR М 2 3 Т W 337 310 226 182 181 191 190 211 173 196 208 132 122 40 Τ 356 293 236 179 196 175 214 187 194 204 235 165 127 88 86 62 3565 356 7 32 71 243 164 F 24 11 20 65 227 310 303 223 187 166 187 14 S S 8 Μ 9 Т 10 W Т 11 F 12

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 334 302 228 183 170 194 182 212 180 175 200 28 11 14 22 235 222 148 124 86 51 3459

AVERAGE WEEKDAY **HOURS** WEEKDAYS WEEKDAY DAYS Axle Adj. Seasonal/Weekday Adjustment Factor Counted Counted Counted High Hour % of day Factor **Hours** 3 54 3 53 334 10% 1.000 1.089

ESTIMATED AADT 3176

ROAD #: ROAD NAME: FRISBIE AVE FROM: MCCARTY AVE TO: SECOND AVE COUNTY: **Albany** STATION: **111244** STATE DIR CODE: 6 PLACEMENT: 275' S of Avenue B DATE OF COUNT: 08/03/2016 DIRECTION:

DATE

8

9

10

11

12

13

14

DAY

Μ

Т

W Т

F

S

S

New York State Department of Transportation

Traffic Count Hourly Report

ROAD #: ROAD NAME: FRISBIE AVE

Southbound

FACTOR GROUP: 30

FROM: MCCARTY AVE REC. SERIAL #: CN65

TO: SECOND AVE FUNC. CLASS: 16

PM

COUNTY: CITY:

TOTAL

Albany

HIGH

COUNT HOUR

STATE DIR CODE: 7 DATE OF COUNT: 08/03/2016 WK OF YR: 32

PLACEMENT: 275' S of Avenue B @ REF MARKER:

NHS: no JURIS: County LION#: BIN:

NOTES LANE 1: SB travel lane

ADDL DATA: Class Speed COUNT TYPE: AXLE PAIRS CC Stn: RR CROSSING: BATCH ID: DOT-R01C32aTST5195HPMS SAMPLE:

COUNT TAKEN BY: ORG CODE: TST INITIALS: BEK

PROCESSED BY: ORG CODE: DOT INITIALS: KCF

12 2 5 6 8 9 10 11 3 6 10 11 12 5 8 TO DAILY DAILY 4 5 6 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 **DAILY** HIGH

М 2 3 Т W 154 165 158 163 201 184 175 219 337 441 378 227 193 148 97 Τ 133 133 155 173 168 200 192 266 334 437 379 221 210 166 113 85 72 3642 437 16 33 13 29 86 F 41 24 15 21 27 79 140 131 167 155 212 209 15 S S

15 Μ 16 Т 17 W Т 18 F 19 S 20 S 21 22 Μ 23 Т 24 W 25 Τ 26 F 27 S 28 S 29 Μ 30 Т 31 W

> AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6AM to Fri Noon) ADT 82 142 143 160 164 194 192 184 242 336 439 74 3624 37 22 13 18 28 378 224 202 157 105

AVERAGE WEEKDAY **HOURS** WEEKDAYS WEEKDAY DAYS Axle Adj. Seasonal/Weekday **ESTIMATED** Adjustment Factor Counted Counted Counted **Hours** High Hour % of day Factor **AADT** 3 54 3 53 439 12% 1.000 1.089 3328

ROAD #: ROAD NAME: FRISBIE AVE STATION: **111244** STATE DIR CODE: 7

FROM: MCCARTY AVE PLACEMENT: 275' S of Avenue B TO: SECOND AVE

COUNTY: DATE OF COUNT:

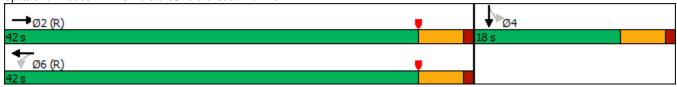
Albany 08/03/2016

	-	•	←	ļ
Lane Group	EBT	WBL	WBT	SBT
Lane Configurations	^		ર્ન	4
Traffic Volume (vph)	314	8	290	48
Future Volume (vph)	314	8	290	48
Turn Type	NA	Perm	NA	NA
Protected Phases	2		6	4
Permitted Phases		6		
Detector Phase	2	6	6	4
Switch Phase				
Minimum Initial (s)	10.0	10.0	10.0	5.0
Minimum Split (s)	15.0	15.0	15.0	10.0
Total Split (s)	42.0	42.0	42.0	18.0
Total Split (%)	70.0%	70.0%	70.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	C-Max	None
Act Effct Green (s)	38.8		38.8	11.2
Actuated g/C Ratio	0.65		0.65	0.19
v/c Ratio	0.35		0.32	0.65
Control Delay	6.3		1.5	31.0
Queue Delay	0.0		0.0	0.0
Total Delay	6.3		1.5	31.0
LOS	Α		Α	С
Approach Delay	6.3		1.5	31.0
Approach LOS	Α		Α	С
Intersection Summary				

Cycle Length: 60 Actuated Cycle Length: 60

Offset: 53 (88%), Referenced to phase 2:EBT and 6:WBTL, Start of Yellow

Natural Cycle: 40


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 10.5 Intersection Capacity Utilization 47.8%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: S Bertha St/Bertha St & 2nd Ave

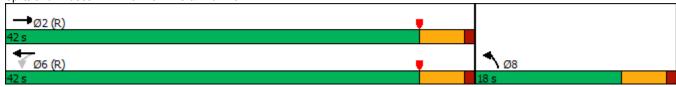
	-	•	•	•
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	1>		ર્ન	Y
Traffic Volume (vph)	129	40	185	504
Future Volume (vph)	129	40	185	504
Turn Type	NA	Perm	NA	Prot
Protected Phases	2		6	8
Permitted Phases		6		
Detector Phase	2	6	6	8
Switch Phase				
Minimum Initial (s)	10.0	10.0	10.0	5.0
Minimum Split (s)	15.0	15.0	15.0	10.0
Total Split (s)	42.0	42.0	42.0	18.0
Total Split (%)	70.0%	70.0%	70.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	C-Max	None
Act Effct Green (s)	37.0		37.0	13.0
Actuated g/C Ratio	0.62		0.62	0.22
v/c Ratio	0.44		0.28	1.54
Control Delay	3.1		6.4	281.8
Queue Delay	0.0		0.0	0.0
Total Delay	3.1		6.4	281.8
LOS	Α		Α	F
Approach Delay	3.1		6.4	281.8
Approach LOS	Α		Α	F
Interportion Cummery				

Intersection Summary

Cycle Length: 60 Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 50


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.54 Intersection Signal Delay: 130.7 Intersection Capacity Utilization 77.9%

Intersection LOS: F ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Hoffman Ave & 2nd Ave

	۶	→	•	←	4	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBT
Lane Configurations		4		4		4	4
Traffic Volume (vph)	17	116	23	147	46	351	136
Future Volume (vph)	17	116	23	147	46	351	136
Turn Type	Perm	NA	Perm	NA	Perm	NA	NA
Protected Phases		2		6		8	4
Permitted Phases	2		6		8		
Detector Phase	2	2	6	6	8	8	4
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0		0.0	0.0
Total Lost Time (s)		5.0		5.0		5.0	5.0
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	Max	Max	Max	Max	None	None	None
Act Effct Green (s)		37.0		37.0		13.0	13.0
Actuated g/C Ratio		0.62		0.62		0.22	0.22
v/c Ratio		0.19		0.20		1.28	0.44
Control Delay		4.9		5.7		169.4	23.1
Queue Delay		0.0		0.0		0.0	0.0
Total Delay		4.9		5.7		169.4	23.1
LOS		Α		Α		F	С
Approach Delay		4.9		5.7		169.4	23.1
Approach LOS		Α		Α		F	С
Intersection Summary							

Actuated Cycle Length: 60

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.28 Intersection Signal Delay: 85.6 Intersection Capacity Utilization 56.8%

Intersection LOS: F
ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Frisbee Ave & 2nd Ave

	٠	→	•	←	•	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	7	141	5	151	11	2	13	2	
Future Volume (vph)	7	141	5	151	11	2	13	2	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		8		4	
Permitted Phases	2		6		8		4		
Detector Phase	2	2	6	6	8	8	4	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0	10.0	
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0	18.0	
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%	30.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		50.1		50.1		6.3		6.4	
Actuated g/C Ratio		0.93		0.93		0.12		0.12	
v/c Ratio		0.12		0.15		0.09		0.12	
Control Delay		1.4		1.4		19.2		16.7	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		1.4		1.4		19.2		16.7	
LOS		Α		Α		В		В	
Approach Delay		1.4		1.4		19.2		16.7	
Approach LOS		Α		Α		В		В	
Intersection Summary									

Actuated Cycle Length: 53.6


Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.15 Intersection Signal Delay: 3.1 Intersection Capacity Utilization 23.6%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Bogart Ter/Slingerland St & 2nd Ave

	•	→	•	←	4	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	44	86	3	84	11	33	2	8	
Future Volume (vph)	44	86	3	84	11	33	2	8	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		8		4	
Permitted Phases	2		6		8		4		
Detector Phase	2	2	6	6	8	8	4	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0	10.0	
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0	18.0	
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%	30.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		44.8		44.8		7.2		7.1	
Actuated g/C Ratio		0.80		0.80		0.13		0.13	
v/c Ratio		0.13		0.11		0.27		0.20	
Control Delay		3.2		2.9		22.0		13.3	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		3.2		2.9		22.0		13.3	
LOS		Α		Α		С		В	
Approach Delay		3.2		2.9		22.0		13.3	
Approach LOS		Α		Α		С		В	
Intersection Summary									

Actuated Cycle Length: 55.9

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.27 Intersection Signal Delay: 7.3 Intersection Capacity Utilization 28.8%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Krank St/Elizabeth St & 2nd Ave

	-	•	←	ļ
Lane Group	EBT	WBL	WBT	SBT
Lane Configurations	1>		ર્ન	4
Traffic Volume (vph)	366	20	386	110
Future Volume (vph)	366	20	386	110
Turn Type	NA	Perm	NA	NA
Protected Phases	2		6	4
Permitted Phases		6		
Detector Phase	2	6	6	4
Switch Phase				
Minimum Initial (s)	10.0	10.0	10.0	5.0
Minimum Split (s)	15.0	15.0	15.0	10.0
Total Split (s)	42.0	42.0	42.0	18.0
Total Split (%)	70.0%	70.0%	70.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max		None
Act Effct Green (s)	37.0		37.0	13.0
Actuated g/C Ratio	0.62		0.62	0.22
v/c Ratio	0.48		0.51	1.27
Control Delay	8.4		4.7	166.6
Queue Delay	0.0		0.0	0.0
Total Delay	8.4		4.7	166.6
LOS	Α		Α	F
Approach Delay	8.4		4.7	166.6
Approach LOS	Α		Α	F
Intersection Summary				

Actuated Cycle Length: 60

Offset: 53 (88%), Referenced to phase 2:EBT and 6:WBTL, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.27 Intersection Signal Delay: 63.8 Intersection Capacity Utilization 76.0%

Intersection LOS: E ICU Level of Service D

Analysis Period (min) 15

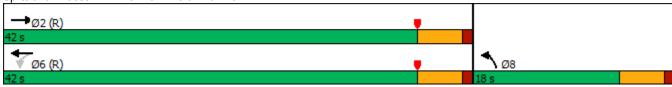
Splits and Phases: 1: S Bertha St/Bertha St & 2nd Ave

	-	•	←	4
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	f)		4	¥
Traffic Volume (vph)	162	96	254	369
Future Volume (vph)	162	96	254	369
Turn Type	NA	Perm	NA	Prot
Protected Phases	2		6	8
Permitted Phases		6		-
Detector Phase	2	6	6	8
Switch Phase				
Minimum Initial (s)	10.0	10.0	10.0	5.0
Minimum Split (s)	15.0	15.0	15.0	10.0
Total Split (s)	42.0	42.0	42.0	18.0
Total Split (%)	70.0%	70.0%	70.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	C-Max	None
Act Effct Green (s)	37.0		37.0	13.0
Actuated g/C Ratio	0.62		0.62	0.22
v/c Ratio	0.67		0.56	1.10
Control Delay	7.7		11.0	103.9
Queue Delay	0.2		0.0	0.0
Total Delay	7.9		11.0	103.9
LOS	A		В	F
Approach Delay	7.9		11.0	103.9
Approach LOS	Α		В	F
Intersection Summary				

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Yellow, Master Intersection

Natural Cycle: 55


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.10 Intersection Signal Delay: 37.4 Intersection Capacity Utilization 91.3%

Intersection LOS: D
ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 2: Hoffman Ave & 2nd Ave

	۶	→	•	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	24	140	36	193	20	122	1	433	
Future Volume (vph)	24	140	36	193	20	122	1	433	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		8		4	
Permitted Phases	2		6		8		4		
Detector Phase	2	2	6	6	8	8	4	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0	10.0	
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0	18.0	
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%	30.0%	,
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	1
Total Lost Time (s)		5.0		5.0		5.0		5.0	1
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	:
Act Effct Green (s)		37.0		37.0		13.0		13.0	1
Actuated g/C Ratio		0.62		0.62		0.22		0.22	
v/c Ratio		0.25		0.30		0.57		1.31	
Control Delay		5.4		6.5		26.9		183.0	ı
Queue Delay		0.0		0.0		0.0		0.0	ı
Total Delay		5.4		6.5		26.9		183.0	ļ
LOS		Α		Α		С		F	
Approach Delay		5.4		6.5		26.9		183.0	
Approach LOS		Α		Α		С		F	
Intersection Summary									

Actuated Cycle Length: 60

Natural Cycle: 45

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.31 Intersection Signal Delay: 89.8 Intersection Capacity Utilization 53.7%

Intersection LOS: F
ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Frisbee Ave & 2nd Ave

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	5	150	9	206	4	2	38	4	
Future Volume (vph)	5	150	9	206	4	2	38	4	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		8		4	
Permitted Phases	2		6		8		4		
Detector Phase	2	2	6	6	8	8	4	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0	10.0	
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0	18.0	
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%	30.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0	
Total Lost Time (s)		5.0		5.0		5.0		5.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		44.9		44.9		7.4		7.5	
Actuated g/C Ratio		0.80		0.80		0.13		0.13	
v/c Ratio		0.16		0.25		0.08		0.34	
Control Delay		3.4		3.7		16.3		20.5	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		3.4		3.7		16.3		20.5	
LOS		Α		Α		В		С	
Approach Delay		3.4		3.7		16.3		20.5	
Approach LOS		Α		Α		В		С	
Intersection Summary									

Actuated Cycle Length: 56.2


Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.34 Intersection Signal Delay: 6.1 Intersection Capacity Utilization 31.7%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Bogart Ter/Slingerland St & 2nd Ave

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	,
Traffic Volume (vph)	39	86	3	191	21	21	8	22	
Future Volume (vph)	39	86	3	191	21	21	8	22	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	L
Protected Phases		2		6		8		4	
Permitted Phases	2		6		8		4		
Detector Phase	2	2	6	6	8	8	4	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	10.0	10.0	10.0	10.0	
Total Split (s)	42.0	42.0	42.0	42.0	18.0	18.0	18.0	18.0)
Total Split (%)	70.0%	70.0%	70.0%	70.0%	30.0%	30.0%	30.0%	30.0%)
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0)
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0		0.0		0.0		0.0)
Total Lost Time (s)		5.0		5.0		5.0		5.0)
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		40.9		40.9		7.3		7.3	
Actuated g/C Ratio		0.74		0.74		0.13		0.13	
v/c Ratio		0.16		0.19		0.25		0.38	
Control Delay		3.9		3.8		21.2		14.7	
Queue Delay		0.0		0.0		0.0		0.0)
Total Delay		3.9		3.8		21.2		14.7	,
LOS		Α		Α		С		В	;
Approach Delay		3.9		3.8		21.2		14.7	,
Approach LOS		Α		Α		С		В	;
Intersection Summary									

Actuated Cycle Length: 55.2

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.38 Intersection Signal Delay: 7.8 Intersection Capacity Utilization 40.0%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Krank St/Elizabeth St & 2nd Ave

328 State St. Schenectady, NY 12305 Region 1 Planning

Location: Albany, NY

Intersection: Rte 9W/87 Exit Ramp Date: Thursday, October 22nd, 2009

Counter: DT

Start Date : 10/22/2009 Page No : 1

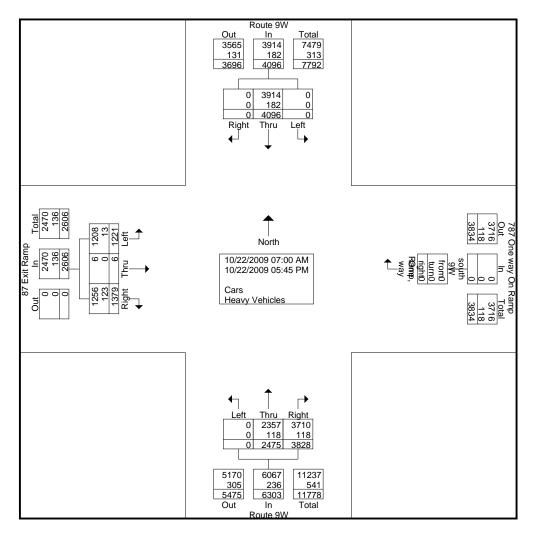
Site Code : 00000000

File Name: Rt 9W at 87 Exit Ramp

Groups Printed- Cars - Heavy Vehicles

Groups Printed- Cars - Heavy Vehicles													1		
	Route 9W From North				787 One way On Ramp From East				te 9W South		87 Exit Ramp From West				
Start Time	Right	Thru	Left	App. Total	One way Ramp, right turn from 9W south	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	0	138	0	138	0	0	222	143	0	365	53	0	94	147	650
07:15 AM	0	177	0	177	0	0	297	165	0	462	96	0	108	204	843
07:30 AM	0	168	0	168	0	0	366	184	0	550	83	0	146	229	947
07:45 AM	0	208	0	208	0	0	363	193	0	556	114	0	113	227	991
Total	0	691	0	691	0	0	1248	685	0	1933	346	0	461	807	3431
08:00 AM	0	195	0	195	0	0	296	157	0	453	102	6	117	225	873
08:15 AM	0	226	0	226	0	0	292	183	0	475	95	0	104	199	900
08:30 AM	0	182	0	182	0	0	306	155	0	461	66	0	116	182	825
08:45 AM	0	152	0	152	0	0	292	155	0	447	65	0	99	164	763
Total	0	755	0	755	0	0	1186	650	0	1836	328	6	436	770	3361
*** BREAK ***															
04:00 PM	0	275	0	275	0	0	205	173	0	378	80	0	47	127	780
04:15 PM	0	343	0	343	0	0	156	125	0	281	80	0	38	118	742
04:30 PM	0	310	0	310	0	0	205	166	0	371	90	0	44	134	815
04:45 PM	0	363	0	363	0	0	211	143	0	354	95	0	37	132	849
Total	0	1291	0	1291	0	0	777	607	0	1384	345	0	166	511	3186
05:00 PM	0	328	0	328	0	0	171	144	0	315	72	0	33	105	748
05:15 PM	0	360	0	360	0	0	162	142	0	304	92	0	44	136	800
05:30 PM	0	367	0	367	0	0	162	125	0	287	101	0	44	145	799
05:45 PM	0	304	0	304	0	0	122	122	0	244	95	0	37	132	680
Total	0	1359	0	1359	0	0	617	533	0	1150	360	0	158	518	3027
Grand Total	0	4096	0	4096	0	0	3828	2475	0	6303	1379	6	1221	2606	13005
Apprch %	0	100	0		0		60.7	39.3	0		52.9	0.2	46.9		
Total %	0	31.5	0	31.5	0	0	29.4	19	0	48.5	10.6	0	9.4	20	
Cars	0	3914	0	3914	0	0	3710	2357	0	6067	1256	6	1208	2470	12451
% Cars	0	95.6	0	95.6	0	0	96.9	95.2	0	96.3	91.1	100	98.9	94.8	95.7
Heavy Vehicles	0	182	0	182	0	0	118	118	0	236	123	0	13	136	554
% Heavy Vehicles	0	4.4	0	4.4	0	0	3.1	4.8	0	3.7	8.9	0	1.1	5.2	4.3

328 State St. Schenectady, NY 12305 Region 1 Planning


Location: Albany, NY

Intersection: Rte 9W/87 Exit Ramp Date: Thursday, October 22nd, 2009

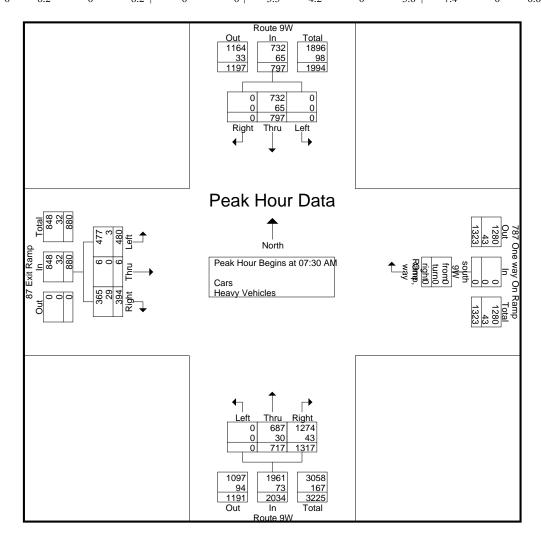
Counter: DT

File Name: Rt 9W at 87 Exit Ramp

Site Code : 00000000 Start Date : 10/22/2009

328 State St. Schenectady, NY 12305 Region 1 Planning

Location: Albany, NY


Intersection: Rte 9W/87 Exit Ramp Date: Thursday, October 22nd, 2009

Counter: DT

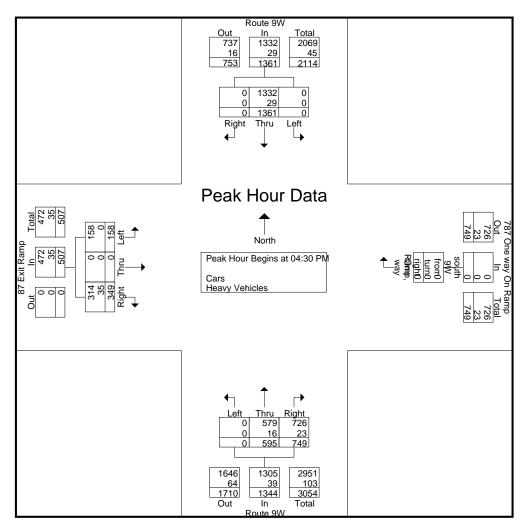
File Name: Rt 9W at 87 Exit Ramp

Site Code : 00000000 Start Date : 10/22/2009

			te 9W North		On	ne way Ramp n East			te 9W South				t Ramp West		
Start Time	Right	Thru	Left	App. Total	One way Ramp, right turn from 9W south	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analy	sis Fron	1 07:00 A	M to 11	:45 AM - Pe		1	'				'				
Peak Hour for Entire	re Interse	ction Beg	ins at 07:	30 AM											
07:30 AM	0	168	0	168	0	0	366	184	0	550	83	0	146	229	947
07:45 AM	0	208	0	208	0	0	363	193	0	556	114	0	113	227	991
08:00 AM	0	195	0	195	0	0	296	157	0	453	102	6	117	225	873
08:15 AM	0	226	0	226	0	0	292	183	0	475	95	0	104	199	900
Total Volume	0	797	0	797	0	0	1317	717	0	2034	394	6	480	880	3711
% App. Total	0	100	0		0		64.7	35.3	0		44.8	0.7	54.5		
PHF	.000	.882	.000	.882	.000	.000	.900	.929	.000	.915	.864	.250	.822	.961	.936
Cars	0	732	0	732	0	0	1274	687	0	1961	365	6	477	848	3541
% Cars	0	91.8	0	91.8	0	0	96.7	95.8	0	96.4	92.6	100	99.4	96.4	95.4
Heavy Vehicles	0	65	0	65	0	0	43	30	0	73	29	0	3	32	170
% Heavy Vehicles	0	8.2	0	8.2	0	0	3.3	4.2	0	3.6	7.4	0	0.6	3.6	4.6

328 State St. Schenectady, NY 12305 Region 1 Planning

Location: Albany, NY


Intersection: Rte 9W/87 Exit Ramp Date: Thursday, October 22nd, 2009

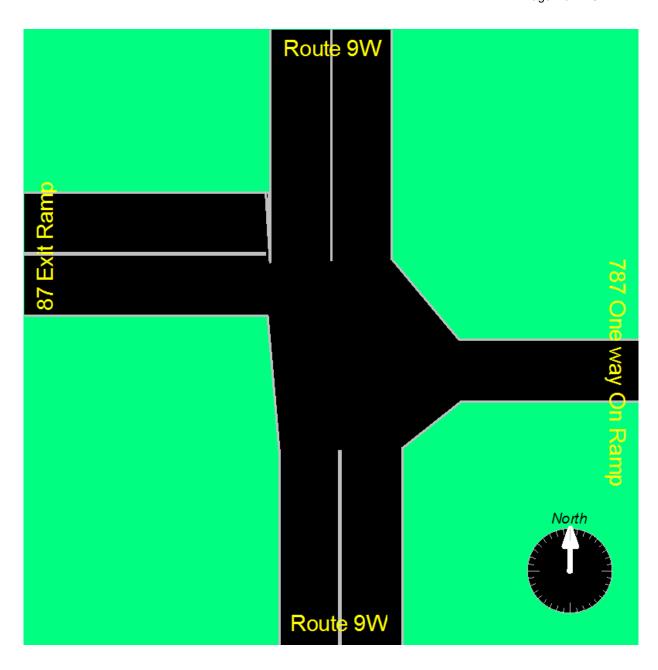
Counter: DT

File Name: Rt 9W at 87 Exit Ramp Site Code: 00000000

Site Code : 00000000 Start Date : 10/22/2009

			te 9W North		On 1	ne way Ramp n East			te 9W South			87 Exit From			
Start Time	Right	Thru	Left	App. Total	One way Ramp, right turn from 9W south	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analy	sis From	12:00 F	M to 05	:45 PM - Pe		1						•			•
Peak Hour for Entire	re Interse	ction Beg	ins at 04:	30 PM											
04:30 PM	0	310	0	310	0	0	205	166	0	371	90	0	44	134	815
04:45 PM	0	363	0	363	0	0	211	143	0	354	95	0	37	132	849
05:00 PM	0	328	0	328	0	0	171	144	0	315	72	0	33	105	748
05:15 PM	0	360	0	360	0	0	162	142	0	304	92	0	44	136	800
Total Volume	0	1361	0	1361	0	0	749	595	0	1344	349	0	158	507	3212
% App. Total	0	100	0		0		55.7	44.3	0		68.8	0	31.2		
PHF	.000	.937	.000	.937	.000	.000	.887	.896	.000	.906	.918	.000	.898	.932	.946
Cars	0	1332	0	1332	0	0	726	579	0	1305	314	0	158	472	3109
% Cars	0	97.9	0	97.9	0	0	96.9	97.3	0	97.1	90.0	0	100	93.1	96.8
Heavy Vehicles	0	29	0	29	0	0	23	16	0	39	35	0	0	35	103
% Heavy Vehicles	0	2.1	0	2.1	0	0	3.1	2.7	0	2.9	10.0	0	0	6.9	3.2

328 State St. Schenectady, NY 12305 *Region 1 Planning*


Location: Albany, NY

Intersection: Rte 9W/87 Exit Ramp Date: Thursday, October 22nd, 2009

Counter: DT

Site Code : 00000000 Start Date : 10/22/2009

File Name: Rt 9W at 87 Exit Ramp

328 State St. Schenectady, NY 12305 Region 1 Planning

Location: Albany, NY Intersection: Rte 9W/87 On Ramp Date: Thursday, October 29th, 2009

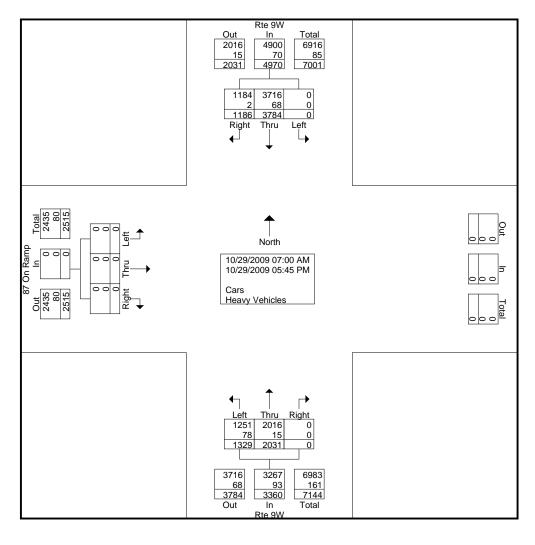
Counter: BF

File Name: Rt 9W at 87 On Ramp

Site Code : 00000000 Start Date : 10/29/2009 Page No : 1

				Gr	oups Printed	d- Cars - H	eavy Vel	nicles					
		Rte 9	9W			Rte				87 On I	Ramp		
		From N				From S	South			From '	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	38	133	0	171	0	158	71	229	0	0	0	0	400
07:15 AM	50	140	0	190	0	180	66	246	0	0	0	0	436
07:30 AM	38	138	0	176	0	160	106	266	0	0	0	0	442
07:45 AM	41	166	0	207	0	181	82	263	0	0	0	0	470
Total	167	577	0	744	0	679	325	1004	0	0	0	0	1748
08:00 AM	55	187	0	242	0	174	85	259	0	0	0	0	501
08:15 AM	46	212	0	258	0	166	57	223	0	0	0	0	481
08:30 AM	40	107	0	147	0	144	92	236	0	0	0	0	383
08:45 AM	24	126	0	150	0	121	54	175	0	0	0	0	325
Total	165	632	0	797	0	605	288	893	0	0	0	0	1690
*** BREAK ***													
04:00 PM	109	304	0	413	0	97	106	203	0	0	0	0	616
04:15 PM	128	313	0	441	0	99	96	195	0	0	0	0	636
04:30 PM	118	285	0	403	0	101	94	195	0	0	0	0	598
04:45 PM	118	326	0	444	0	91	110	201	0	0	0	0	645
Total	473	1228	0	1701	0	388	406	794	0	0	0	0	2495
05:00 PM	113	330	0	443	0	86	90	176	0	0	0	0	619
05:15 PM	117	348	0	465	0	87	70	157	0	0	0	0	622
05:30 PM	96	344	0	440	0	85	89	174	0	0	0	0	614
05:45 PM	55	325	0	380	0	101	61	162	0	0	0	0	542
Total	381	1347	0	1728	0	359	310	669	0	0	0	0	2397
Grand Total	1186	3784	0	4970	0	2031	1329	3360	0	0	0	0	8330
Apprch %	23.9	76.1	0		0	60.4	39.6		0	0	0		
Total %	14.2	45.4	0	59.7	0	24.4	16	40.3	0	0	0	0	
Cars	1184	3716	0	4900	0	2016	1251	3267	0	0	0	0	8167
% Cars	99.8	98.2	0	98.6	0	99.3	94.1	97.2	0	0	0	0	98
Heavy Vehicles	2	68	0	70	0	15	78	93	0	0	0	0	163
% Heavy Vehicles	0.2	1.8	0	1.4	0	0.7	5.9	2.8	0	0	0	0	2

328 State St. Schenectady, NY 12305 Region 1 Planning


Location: Albany, NY

Intersection: Rte 9W/87 On Ramp Date: Thursday, October 29th, 2009

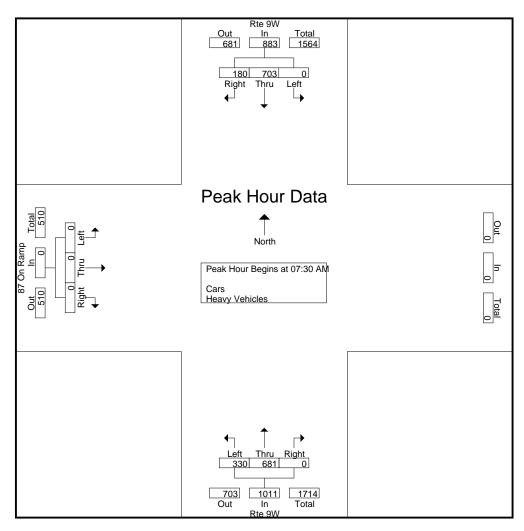
Counter: BF

File Name: Rt 9W at 87 On Ramp

Site Code : 00000000 Start Date : 10/29/2009

328 State St. Schenectady, NY 12305 *Region 1 Planning*

Location: Albany, NY


Intersection: Rte 9W/87 On Ramp Date: Thursday, October 29th, 2009

Counter: BF

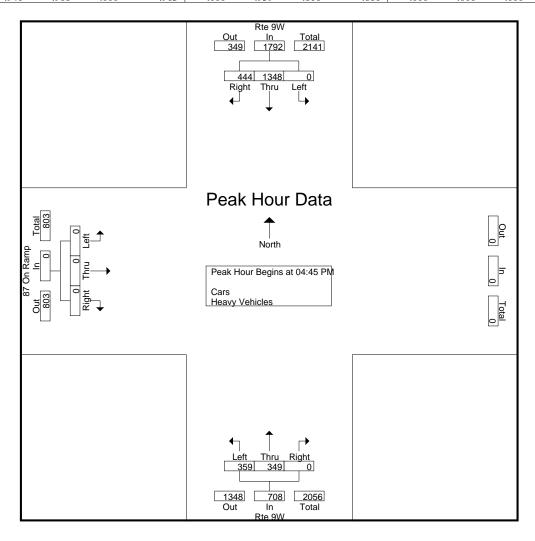
File Name: Rt 9W at 87 On Ramp Site Code: 00000000

Start Date : 10/29/2009

		Rte	9W			Rte	9W			87 On 1	Ramp		
		From 1	North			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis F	From 07:00 A	AM to 11:4	5 AM - Pea	ak 1 of 1									
Peak Hour for Entire	Intersection	Begins at (07:30 AM										
07:30 AM	38	138	0	176	0	160	106	266	0	0	0	0	442
07:45 AM	41	166	0	207	0	181	82	263	0	0	0	0	470
08:00 AM	55	187	0	242	0	174	85	259	0	0	0	0	501
08:15 AM	46	212	0	258	0	166	57	223	0	0	0	0	481
Total Volume	180	703	0	883	0	681	330	1011	0	0	0	0	1894
% App. Total	20.4	79.6	0		0	67.4	32.6		0	0	0		
PHF	.818	.829	.000	.856	.000	.941	.778	.950	.000	.000	.000	.000	.945

328 State St. Schenectady, NY 12305 *Region 1 Planning*

Location: Albany, NY


Intersection: Rte 9W/87 On Ramp Date: Thursday, October 29th, 2009

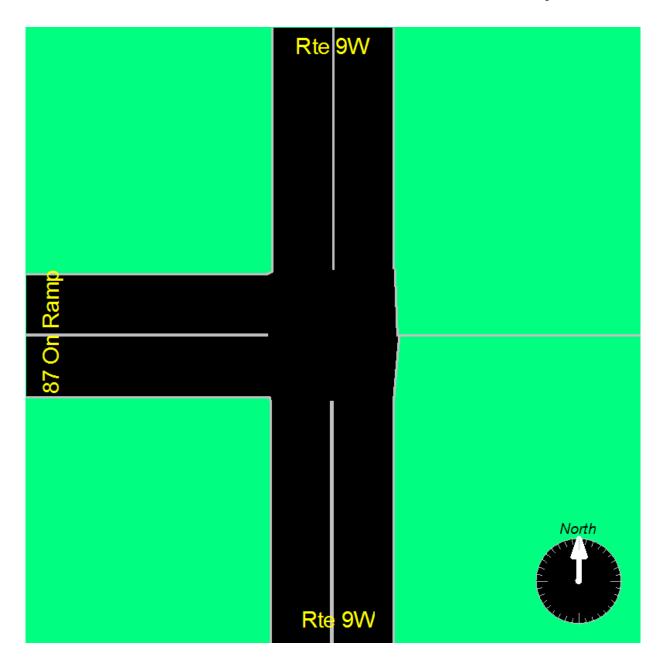
Counter: BF

File Name: Rt 9W at 87 On Ramp

Site Code : 00000000 Start Date : 10/29/2009

		Rte	9W			Rte	e 9W			87 On 1	Ramp		
		From	North			From	South			From '	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis F	From 12:00	PM to 05:4	5 PM - Pea	ık 1 of 1	_				_				
Peak Hour for Entire	Intersection	n Begins at	04:45 PM										
04:45 PM	118	326	0	444	0	91	110	201	0	0	0	0	645
05:00 PM	113	330	0	443	0	86	90	176	0	0	0	0	619
05:15 PM	117	348	0	465	0	87	70	157	0	0	0	0	622
05:30 PM	96	344	0	440	0	85	89	174	0	0	0	0	614
Total Volume	444	1348	0	1792	0	349	359	708	0	0	0	0	2500
% App. Total	24.8	75.2	0		0	49.3	50.7		0	0	0		
PHF	.941	.968	.000	.963	.000	.959	.816	.881	.000	.000	.000	.000	.969

328 State St. Schenectady, NY 12305 *Region 1 Planning*


Location: Albany, NY

Intersection: Rte 9W/87 On Ramp Date: Thursday, October 29th, 2009

Counter: BF

File Name: Rt 9W at 87 On Ramp

Site Code : 00000000 Start Date : 10/29/2009

328 State St. Schenectady, NY 12305

Region 1 Planning

Albany, NY S. Pearl @ Green & 1St Street Counter:JSR

Albany County

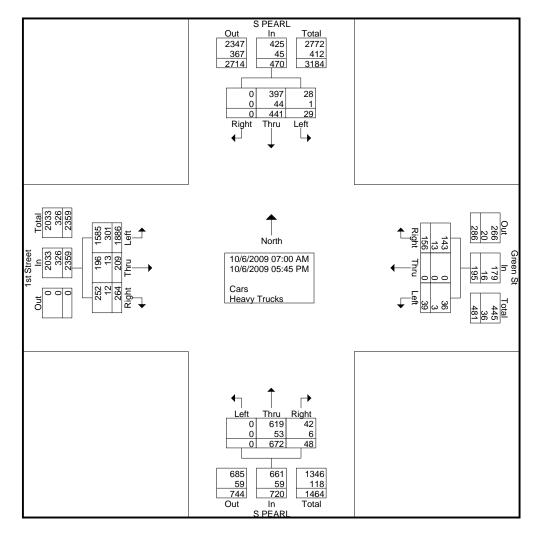
File Name: S. Pearl @ Green & 1St Street_10-16-09_

Site Code : 00000000 Start Date : 10/6/2009

Page No : 1

Groups Printed- Cars - Heavy Trucks

								teu- Cai	<u> </u>	_							
		S PE	ARL			Gree	en St			S PE	EARL			1st S	Street		
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	0	18	2	20	7	0	1	8	1	25	0	26	14	14	68	96	150
07:15 AM	0	36	1	37	12	0	1	13	1	15	0	16	16	9	91	116	182
07:30 AM	0	33	1	34	5	0	4	9	2	27	0	29	15	9	57	81	153
07:45 AM	0	29	1	30	10	0	2	12	2	23	0	25	16	8	80	104	171
Total	0	116	5	121	34	0	8	42	6	90	0	96	61	40	296	397	656
	1				ı				ı				ı				ı
08:00 AM	0	44	5	49	9	0	2	11	3	29	0	32	16	6	87	109	201
08:15 AM	0	35	0	35	8	0	0	8	1	28	0	29	17	10	95	122	194
08:30 AM	0	34	2	36	5	0	2	7	3	41	0	44	28	8	87	123	210
08:45 AM	0	29	3	32	8	0	2	10	2	32	0	34	21	7	93	121	197
Total	0	142	10	152	30	0	6	36	9	130	0	139	82	31	362	475	802
***** ***** ****	** ***** *	****	*** ****	* *****	*** *****	******	**** ***	*** *****	DE \ K *:	**** ***	*** ****	* *****	*** *****	*****	****	*** *****	****
									DKEAK								
04:00 PM	0	33	2	35	12	0	7	19	3	65	0	68	20	20	140	180	302
04:15 PM	0	17	1	18	13	Ö	5	18	6	46	0	52	21	19	163	203	291
04:30 PM	0	34	3	37	13	0	3	16	5	56	0	61	8	21	156	185	299
04:45 PM	0	17	2	19	15	0	0	15	3	65	0	68	9	30	132	171	273
Total	0	101	8	109	53	0	15	68	17	232	0	249	58	90	591	739	1165
05:00 PM	0	27	0	27	9	0	2	11	5	51	0	56	16	14	203	233	327
05:15 PM	0	16	2	18	7	0	1	8	3	72	0	75	16	20	154	190	291
05:30 PM	0	19	3	22	14	0	4	18	4	58	0	62	22	13	152	187	289
05:45 PM	0	20	1_	21	9	0	3	12	4	39	0	43	9	1_	128	138	214
Total	0	82	6	88	39	0	10	49	16	220	0	236	63	48	637	748	1121
0 17 1			00	470	450			405		070		700	004	000	4000	0050	0744
Grand Total	0	441	29	470	156	0	39	195	48	672	0	720	264	209	1886	2359	3744
Apprch % Total %	0	93.8	6.2	12.6	80 4.2	0 0	20 1	5.2	6.7 1.3	93.3 17.9	0	10.2	11.2 7.1	8.9 5.6	79.9	63	
rotal %_ Cars	0	11.8 397	0.8 28	425	143	0	36	5.2 179	42	619	0	19.2 661	252	<u>5.6</u> 196	50.4 1585	2033	3298
% Cars	0	397 90	28 96.6	425 90.4	91.7	0	92.3	91.8	87.5	92.1	0	91.8	252 95.5	93.8	1585	2033 86.2	3298 88.1
Heavy Trucks	0	<u>90</u> 44	<u>96.6</u> 1	90.4 45	13	0	<u>92.3</u> 3	16	6/.5	<u>92.1</u> 53	0	59	95.5 12	93.6 _ 13	301	326	446
% Heavy Trucks	0	10	3.4	9.6	8.3	0	7.7	8.2	12.5	7.9	0	8.2	4.5	6.2	16	13.8	11.9
70 HEAVY HUCKS		10	U. T	0.0	0.0	J	1.1	0.2	12.0	1.3	J	0.2	T.J	0.2	10	10.0	


328 State St. Schenectady, NY 12305

Region 1 Planning

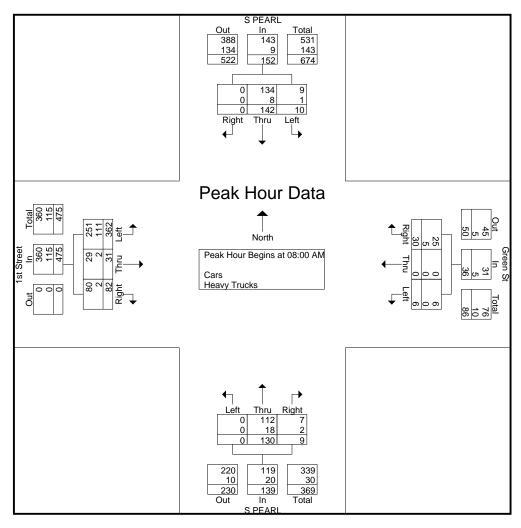
File Name: S. Pearl @ Green & 1St Street_10-16-09_

Site Code : 00000000 Start Date : 10/6/2009

328 State St. Schenectady, NY 12305

Region 1 Planning

Albany, NY S. Pearl @ Green & 1St Street Counter:JSR


Albany County

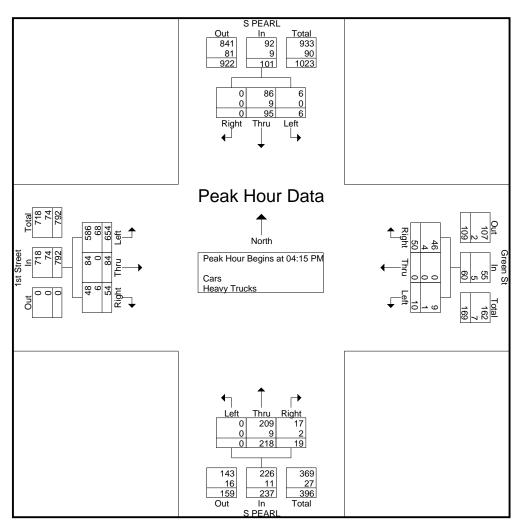
Page No : 3

File Name: S. Pearl @ Green & 1St Street_10-16-09_ Site Code : 00000000

Start Date : 10/6/2009

		S PE	ARL			Gree	n St			S PE	ARL			1st S	Street		
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 07:00	AM to 11	I:45 AM -	Peak 1	of 1			_				_				
Peak Hour for E	ntire Inte	rsection	Begins	at 08:00	AM												
08:00 AM	0	44	5	49	9	0	2	11	3	29	0	32	16	6	87	109	201
08:15 AM	0	35	0	35	8	0	0	8	1	28	0	29	17	10	95	122	194
08:30 AM	0	34	2	36	5	0	2	7	3	41	0	44	28	8	87	123	210
08:45 AM	0	29	3	32	8	0	2	10	2	32	0	34	21	7	93	121	197
Total Volume	0	142	10	152	30	0	6	36	9	130	0	139	82	31	362	475	802
% App. Total	0	93.4	6.6		83.3	0	16.7		6.5	93.5	0		17.3	6.5	76.2		
PHF	.000	.807	.500	.776	.833	.000	.750	.818	.750	.793	.000	.790	.732	.775	.953	.965	.955
Cars	0	134	9	143	25	0	6	31	7	112	0	119	80	29	251	360	653
% Cars	0	94.4	90.0	94.1	83.3	0	100	86.1	77.8	86.2	0	85.6	97.6	93.5	69.3	75.8	81.4
Heavy Trucks	0	8	1	9	5	0	0	5	2	18	0	20	2	2	111	115	149
% Heavy Trucks	0	5.6	10.0	5.9	16.7	0	0	13.9	22.2	13.8	0	14.4	2.4	6.5	30.7	24.2	18.6

328 State St. Schenectady, NY 12305


Region 1 Planning

File Name : S. Pearl @ Green & 1St Street_10-16-09_

Site Code : 00000000 Start Date : 10/6/2009

Albany County
Albany, NY
S. Pearl @ Green & 1St Street
Counter:JSR

		S PE	ARL			Gre	en St			S PE	EARL			1st S	Street		
		From	North			From	East			From	South	1		From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 12:00	PM to 0	5:45 PM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 04:15	PM												
04:15 PM	0	17	1	18	13	0	5	18	6	46	0	52	21	19	163	203	291
04:30 PM	0	34	3	37	13	0	3	16	5	56	0	61	8	21	156	185	299
04:45 PM	0	17	2	19	15	0	0	15	3	65	0	68	9	30	132	171	273
05:00 PM	0	27	0	27	9	0	2	11	5	51	0	56	16	14	203	233	327
Total Volume	0	95	6	101	50	0	10	60	19	218	0	237	54	84	654	792	1190
% App. Total	0	94.1	5.9		83.3	0	16.7		8	92	0		6.8	10.6	82.6		
PHF	.000	.699	.500	.682	.833	.000	.500	.833	.792	.838	.000	.871	.643	.700	.805	.850	.910
Cars	0	86	6	92	46	0	9	55	17	209	0	226	48	84	586	718	1091
% Cars	0	90.5	100	91.1	92.0	0	90.0	91.7	89.5	95.9	0	95.4	88.9	100	89.6	90.7	91.7
Heavy Trucks	0	9	0	9	4	0	1	5	2	9	0	11	6	0	68	74	99
% Heavy Trucks	0	9.5	0	8.9	8.0	0	10.0	8.3	10.5	4.1	0	4.6	11.1	0	10.4	9.3	8.3

328 State St. Schenectady, NY 12305

Region 1 Planning

Site Code : 00000000

File Name: South pearl @ 787 Access north10-22-09_

Start Date : 10/21/2009

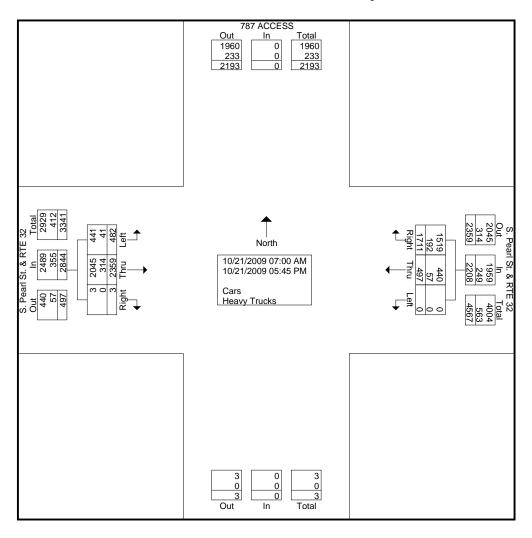
Page No : 1

Albany County Albany, NY Rte South Pearl @ 787 Access ramp Counter: JSR

Groups Printed- Cars - Heavy Trucks

				Toupsin	iiica cars	ricary rracii					
	From North	S	S. Pearl St. From		2	From South			. & RTE 32 West	;	
Start Time	App. Total	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor		1.0	1.0	1.0			1.0	1.0	1.0		
07:00 AM	0	104	33	0	137	0	0	66	30	96	233
07:15 AM	0	134	39	0	173	0	0	95	30	125	298
07:30 AM	0	160	34	0	194	0	0	89	36	125	319
07:45 AM	0	178	30	0	208	0	1	99	23	123	331
Total	0	576	136	0	712	0	1	349	119	469	1181
08:00 AM	0	158	47	0	205	0	0	120	30	150	355
08:15 AM	0	142	47	0	189	0	0	97	18	115	304
08:30 AM	0	127	33	0	160	0	0	97	35	132	292
08:45 AM	0	92	35	0	127	0	0	123	25	148	275
Total	0	519	162	0	681	0	0	437	108	545	1226
***** ***** *****							BREAK ***				
04:00 PM	0	84	25	0	109	0	2	193	33	228	337
04:15 PM	0	99	23	0	122	0	0	200	35	235	357
04:30 PM	0	101	25	0	126	0	0	213	30	243	369
04:45 PM	0	86	26	0	112	0	0	226	33	259	371
Total	0	370	99	0	469	0	2	832	131	965	1434
05:00 PM	0	71	25	0	96	0	0	218	36	254	350
05:15 PM	0	61	21	0	82	0	0	213	24	237	319
05:30 PM	0	64	27	0	91	0	0	170	35	205	296
05:45 PM	0	50	27	0	77	0	0	140	29	169	246
Total	0	246	100	0	346	0	0	741	124	865	1211
Grand Total	0	1711	497	0	2208	0	3	2359	482	2844	5052
Apprch %		77.5	22.5	0			0.1	82.9	16.9		
Total %	0	33.9	9.8	0	43.7	0	0.1	46.7	9.5	56.3	
Cars	0	1519	440	0	1959	0	3	2045	441	2489	4448
% Cars	0	88.8	88.5	0	88.7	0	100	86.7	91.5	87.5	88
Heavy Trucks	0	192	57	0	249	0	0	314	41	355	604
% Heavy Trucks	0	11.2	11.5	0	11.3	0	0	13.3	8.5	12.5	12

328 State St. Schenectady, NY 12305


Schenectady, NY 12305 *Region 1 Planning*

File Name : South pearl @ 787 Access north10-22-09_

Site Code : 00000000 Start Date : 10/21/2009

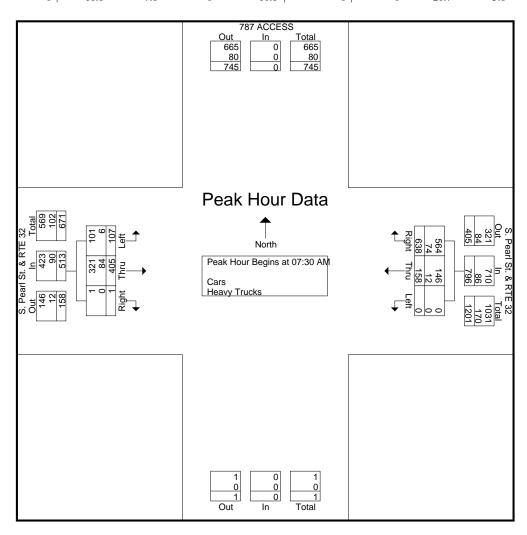
Page No : 2

Albany County Albany, NY Rte South Pearl @ 787 Access ramp Counter: JSR

328 State St. Schenectady, NY 12305

Region 1 Planning

Start Date : 10/21/2009 Page No : 3


Site Code : 00000000

File Name: South pearl @ 787 Access north10-22-09_

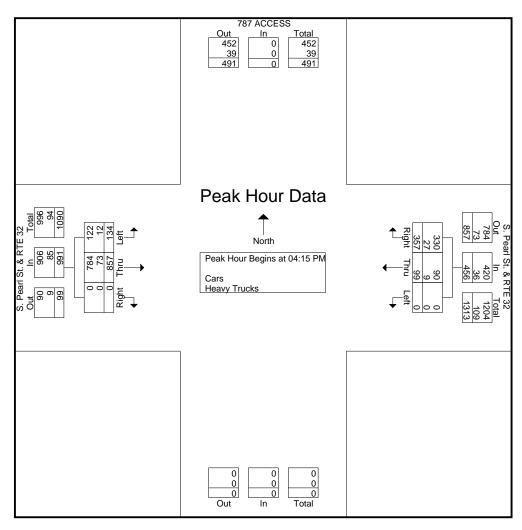
Albany County Albany, NY Rte South Pearl @ 787 Access ramp

Counter: JSR

	From North		S. Pearl St. From		2	From South	S	S. Pearl St. From			
Start Time	App. Total	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis Fro	m 07:00 AM to	11:45 AM -	Peak 1 of 1								
Peak Hour for Entire Int	ersection Begin	ns at 07:30 A	.M								
07:30 AM	0	160	34	0	194	0	0	89	36	125	319
07:45 AM	0	178	30	0	208	0	1	99	23	123	331
08:00 AM	0	158	47	0	205	0	0	120	30	150	355
08:15 AM	0	142	47	0	189	0	0	97	18	115	304
Total Volume	0	638	158	0	796	0	1	405	107	513	1309
% App. Total		80.2	19.8	0			0.2	78.9	20.9		
PHF	.000	.896	.840	.000	.957	.000	.250	.844	.743	.855	.922
Cars	0	564	146	0	710	0	1	321	101	423	1133
% Cars	0	88.4	92.4	0	89.2	0	100	79.3	94.4	82.5	86.6
Heavy Trucks	0	74	12	0	86	0	0	84	6	90	176
% Heavy Trucks	0	11.6	7.6	0	10.8	0	0	20.7	5.6	17.5	13.4

328 State St. Schenectady, NY 12305

Region 1 Planning


File Name: South pearl @ 787 Access north10-22-09_

Site Code : 00000000 Start Date : 10/21/2009

Page No : 4

Albany County Albany, NY Rte South Pearl @ 787 Access ramp Counter: JSR

	From North		S. Pearl St. From			From South	\$	S. Pearl St. From		2	
Start Time	App. Total	Right	Thru	Left	App. Total	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis Fro	m 12:00 PM to	05:45 PM -	Peak 1 of 1								
Peak Hour for Entire Int	ersection Begin	ns at 04:15 P	M								
04:15 PM	0	99	23	0	122	0	0	200	35	235	357
04:30 PM	0	101	25	0	126	0	0	213	30	243	369
04:45 PM	0	86	26	0	112	0	0	226	33	259	371
05:00 PM	0	71	25	0	96	0	0	218	36	254	350
Total Volume	0	357	99	0	456	0	0	857	134	991	1447
% App. Total		78.3	21.7	0			0	86.5	13.5		
PHF	.000	.884	.952	.000	.905	.000	.000	.948	.931	.957	.975
Cars	0	330	90	0	420	0	0	784	122	906	1326
% Cars	0	92.4	90.9	0	92.1	0	0	91.5	91.0	91.4	91.6
Heavy Trucks	0	27	9	0	36	0	0	73	12	85	121
% Heavy Trucks	0	7.6	9.1	0	7.9	0	0	8.5	9.0	8.6	8.4

New York State Department of Transportation

STATION: 112031

5/07, Wed

Month Seasonal

1.08

Sun

1.00

Mon

1.00

Tue

1.00

Wed

1.00

Thu

1.00

Fri

1.00

Roadway Traffic Count Hourly Report

Vehicle

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE REGION-COUNTY: 1-ALBANY FED DIR CODE: 1,5 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.26 FACTOR GROUP: 30 BIN:

DOT ID: 104501 LANES BY DIR: 1 North 1 South CC STN: RR CROSSING: BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE:

NOTES 1: NB travel lane PLACEMENT: 200' N of Gansevoort St î JURISDICTION: 04-City or village 1 WAY CODE: NOTES 2: SB travel lane COUNT TYPE:

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH DATE 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR 5/01, Thu 5/02, Fri 317 273 477 17-18 5/03, Sat 308 15-16 5/04, Sun 287 14-15 5/05, Mon 458 16-17 5/06, Tue 464 16-17

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon) **AWDT** 165 278 298 311 324 341 411 457 452 331

						ESTIMATED						
DAYS	HOURS	WEEKDAYS	WEEKDAY	VEEKDAY Roadway			th	Sou	ıth	AADT		
Counted	Counted	Counted	Hours	High Hour	% of day	High Hour	% of day	High Hour	% of day	Roadway	North	South
6	147	3	81	457	8.4	253	9.8	289	10	5056	2229	2464

Axl

1.00

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE

Sat

1.00

Created on: 08/12/2014 8:25 STATION: 112031 PLACEMENT: 200' N of Gansevoort St î REGION-COUNTY 1-ALBANY DV20 Page 1 of 3

New York State Department of Transportation NB Traffic Count Hourly Report

COUNT TYPE:

Vehicle

1.08

1.00

1.00

1.00

1.00

1.00

1.00

STATION:

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE REGION-COUNTY: 1-ALBANY FED DIR CODE: 1 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.26 FACTOR GROUP: 30 BIN:

DOT ID: CC STN: LANES BY DIR: 1 North RR CROSSING: BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE: NOTES 1: NB travel lane PLACEMENT: 200' N of Gansevoort St î JURISDICTION: 04-City or village 1 WAY CODE:

NOTES 2: SB travel lane

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH DATE 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR 5/01, Thu 5/02, Fri 280 08-09 5/03, Sat 157 15-16 5/04, Sun 141 14-15 5/05, Mon 262 08-09 5/06, Tue 233 08-09 5/07, Wed

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon)

AWDT
30 10 6 6 9 25 86 186 253 152 146 146 153 149 160 187 168 176 146 127 97 64 44 45 2569

								AVERAGE V	VEEKDA	Y		I	ESTIMATI	ED
DAYS	DAYS HOURS WEEKDAY		AYS	WEEKDAY	Y Roadway		North		So	South		AADT		
Counted	Counted	Counte	ed	Hours	H	igh Hour	% of day	High Hour	% of day	High Hour	% of day	Roadway	North	South
6	147	3		81		457	8.4	253	9.8	289	10	5056	2229	2464
FACTOR														
Month Sea	asonal Sun	Mon Tue	We	d Thu	Fri	Sat	Axl							

1.00

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE

1.00

Created on: 08/12/2014 8:25 STATION: 112031 PLACEMENT: 200' N of Gansevoort St î REGION-COUNTY 1-ALBANY DV20 Page 2 of 3

New York State Department of Transportation SB Traffic Count Hourly Report

STATION: 112031

1.08

1.00

1.00

1.00

1.00

1.00

1.00

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE REGION-COUNTY: 1-ALBANY FED DIR CODE: 5 REF. MARKER: FUNC. CLASS: 16 - U Minor Arterial MUNI: Albany-City-2001

ST DIR CODE: 6 END MILEPOST: 1.26 FACTOR GROUP: 30 BIN:

DOT ID: CC STN: LANES BY DIR: 1 South RR CROSSING: BEGIN DATE: 5/1/2014 WEEK OF YEAR: 18 ADDL DATA: HPMS SAMPLE: NOTES 1: NB travel lane PLACEMENT: 200' N of Gansevoort St î JURISDICTION: 04-City or village 1 WAY CODE:

NOTES 2: SB travel lane COUNT TYPE:

TAKEN BY: TST-BEK PROCESSED BY: R01-TDB BATCH ID: DOT-R01R1 WW1 SPEED LIMIT:

DAILY HIGH HIGH 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 TOTAL COUNT HOUR DATE 5/01, Thu 5/02, Fri 285 16-17 5/03, Sat 162 17-18 5/04, Sun 163 13-14 5/05, Mon 277 16-17 5/06, Tue 308 16-17 5/07, Wed

Vehicle

AVERAGE WEEKDAY HOURS (Axle Factored, Mon 6 AM to Fri Noon)

AWDT
39 19 10 10 9 23 79 92 136 136 146 152 159 175 181 225 289 276 184 153 132 108 82 64 2879

									ESTIMATED							
DAYS	HOURS	WEEKDA	AYS	WEEKDAY		WEEKDAY		WEEKDAY Roadway		North		So	outh		AADT	
Counted	Counted	Counte	d	Hours	H	igh Hour	% of day	High Hour	% of day	High Hour	% of day	Roadway	North	South		
6	147	3		81		457	8.4	253	9.8	289	10	5056	2229	2464		
FACTOR																
Month Sea	asonal Sun	Mon Tue	Wed	l Thu	Fri	Sat	Axl									

ROUTE/ROAD: PEARL ST S FROM: SCHUYLER ST TO: MCCARTY AVE

1.00

Created on: 08/12/2014 8:25 STATION: 112031 PLACEMENT: 200' N of Gansevoort St î REGION-COUNTY 1-ALBANY DV20 Page 3 of 3

1.00

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process
THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX B LEVEL OF SERVICE DEFINITIONS

Level of Service Definitions

Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
В	> 10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
С	> 15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	> 25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
Е	> 35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.
F	> 50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Signalized Intersections

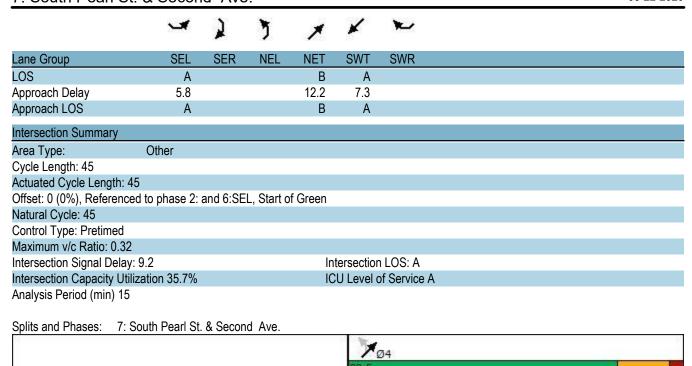
Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
В	> 10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
С	> 20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	> 35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volumeto-capacity ratios and unfavourable progression.
E	> 55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	> 80	UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process

THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX C DETAIL CAPACITY ANALYSIS REPORTS


Appendix C1 – Current Conditions Appendix C2 - Future Conditions

DETAIL CAPACITY ANALYSIS REPORT APPENDIX C1 - CURRENT CONDITIONS

	_1	-	7	_		€.	•	*	/	6	×	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	40	85	15	5	190	5	21	20	12	10	25	10
Future Volume (vph)	42	105	15	5	252	5	21	20	12	10	25	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988			0.998			0.970			0.964	
Flt Protected		0.987			0.999			0.981			0.990	
Satd. Flow (prot)	0	1816	0	0	1857	0	0	1773	0	0	1778	0
Flt Permitted		0.881			0.997			0.884			0.943	
Satd. Flow (perm)	0	1621	0	0	1853	0	0	1597	0	0	1693	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16			3			13			14	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		226			199			321			521	
Travel Time (s)		5.0			4.4			7.1			11.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	46	114	16	5	274	5	23	22	13	11	27	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	176	0	0	284	0	0	58	0	0	52	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	<u> </u>		0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.0	37.0		37.0	37.0		13.0	13.0		13.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		37.0			37.0			13.0			13.0	
Actuated g/C Ratio		0.62			0.62			0.22			0.22	
v/c Ratio		0.18			0.25			0.16			0.14	
Control Delay		5.0			5.8			17.2			16.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		5.0			5.8			17.2			16.2	

	-	1	7	×	K	×
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	Y	VEI (स्	1	31111
Traffic Volume (vph)	50	50	50	150	100	45
Future Volume (vph)	50	50	50	150	100	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.932	1.00	1.00	1.00	0.958	1.00
Flt Protected	0.976			0.988	0.550	
Satd. Flow (prot)	1694	0	0	1840	1785	0
Flt Permitted	0.976	U	- 0	0.900	1700	
Satd. Flow (perm)	1694	0	0	1676	1785	0
Right Turn on Red	1034	Yes	U	1070	1700	Yes
Satd. Flow (RTOR)	54	165			49	165
	31			31	31	
Link Speed (mph)						
Link Distance (ft)	191			422	731	
Travel Time (s)	4.2	0.00	0.00	9.3	16.1	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	54	54	54	163	109	49
Shared Lane Traffic (%)						
Lane Group Flow (vph)	108	0	0	217	158	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	48			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16	9	16			9
Turn Type	Prot		Perm	NA	NA	
Protected Phases	6			4	8	
Permitted Phases			4			
Minimum Split (s)	22.5		22.5	22.5	22.5	
Total Split (s)	22.5		22.5	22.5	22.5	
Total Split (%)	50.0%		50.0%	50.0%	50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0	
Yellow Time (s)	3.5		3.5	3.5	3.5	
All-Red Time (s)	1.0		1.0	1.0	1.0	
Lost Time Adjust (s)	0.0			0.0	0.0	
Total Lost Time (s)	4.5			4.5	4.5	
Lead/Lag	T.U			7.0	7.0	
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	18.0		U	18.0	18.0	
` ,	0.40			0.40	0.40	
Actuated g/C Ratio						
v/c Ratio	0.15			0.32	0.21	
Control Delay	5.8			12.2	7.3	
Queue Delay	0.0			0.0	0.0	
Total Delay	5.8			12.2	7.3	

RA ENGINEERING EXISTING AM TRAFFIC

Ø6 (R)

	4	7	7	×	K	×
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	W			4	1	
Traffic Volume (vph)	50	55	100	115	100	180
Future Volume (vph)	70	55	100	115	100	242
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.940				0.905	
Flt Protected	0.973			0.977	0.000	
Satd. Flow (prot)	1704	0	0	1820	1686	0
Flt Permitted	0.973			0.684	1300	
Satd. Flow (perm)	1704	0	0	1274	1686	0
Right Turn on Red	1104	Yes		1217	1000	Yes
Satd. Flow (RTOR)	60	103			263	100
Link Speed (mph)	31			31	31	
Link Distance (ft)	577			422	365	
Travel Time (s)	12.7			9.3	8.0	
Peak Hour Factor		0.92	0.92			0.00
	0.92 76		109	0.92	0.92	0.92 263
Adj. Flow (vph)	70	60	109	125	109	203
Shared Lane Traffic (%)	400	0	0	024	270	0
Lane Group Flow (vph)	136	0	0	234	372	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	48			16	16	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16	9	_ 16		_	9
Turn Type	Prot		Perm	NA	NA	
Protected Phases	6			4	8	
Permitted Phases			4			
Minimum Split (s)	22.5		22.5	22.5	22.5	
Total Split (s)	22.5		22.5	22.5	22.5	
Total Split (%)	50.0%		50.0%	50.0%	50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0	
Yellow Time (s)	3.5		3.5	3.5	3.5	
All-Red Time (s)	1.0		1.0	1.0	1.0	
Lost Time Adjust (s)	0.0			0.0	0.0	
Total Lost Time (s)	4.5			4.5	4.5	
Lead/Lag						
Lead-Lag Optimize?						
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	18.0		<u> </u>	18.0	18.0	
Actuated g/C Ratio	0.40			0.40	0.40	
v/c Ratio	0.40			0.46	0.45	
Control Delay	6.3			13.6	5.2	
	0.0			0.0	0.0	
Queue Delay						
Total Delay	6.3			13.6	5.2	

	4	7	7	×	K	~		
Lane Group	SEL	SER	NEL	NET	SWT	SWR		
LOS	Α			В	Α			
Approach Delay	6.3			13.6	5.2			
Approach LOS	А			В	Α			
Intersection Summary								
Area Type:	Other							
Cycle Length: 45								
Actuated Cycle Length:	45							
Offset: 0 (0%), Referen	ced to phase 2:	and 6:SE	L, Start c	of Green				
Natural Cycle: 45								
Control Type: Pretimed								
Maximum v/c Ratio: 0.4	.6							
Intersection Signal Dela	ıy: 8.1			In	tersection	LOS: A		
Intersection Capacity U	tilization 45.3%			IC	U Level o	of Service A		
Analysis Period (min) 1	5							
Splits and Phases: 7	· S Paarl St & 2	ης Δνα						
	. 0 1 Gan Ot. & 2	iu Ave.			100			
					7	34		
V-20					22.5 s		54	
OF (D)					X.	78		
Ø6 (R)			- 4			00		_

	_1	-	7	_		€.	•	1	/	6	×	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	45	85	12	5	85	5	11	35	11	5	10	10
Future Volume (vph)	45	85	12	5	85	5	11	35	11	5	10	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989			0.993			0.974			0.945	
Flt Protected		0.984			0.998			0.990			0.991	
Satd. Flow (prot)	0	1813	0	0	1846	0	0	1796	0	0	1744	0
Flt Permitted		0.907		•	0.992		· ·	0.926	•		0.920	
Satd. Flow (perm)	0	1671	0	0	1835	0	0	1680	0	0	1619	0
Right Turn on Red		1071	Yes	•	1000	Yes	•	1000	Yes	•	1010	Yes
Satd. Flow (RTOR)		13	100		5	100		12	100		11	100
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		226			199			321			521	
Travel Time (s)		5.0			4.4			7.1			11.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	92	13	5	92	5	12	38	12	5	11	11
Shared Lane Traffic (%)	73	32	10	<u> </u>	JZ	3	12	30	12	J	11	11
Lane Group Flow (vph)	0	154	0	0	102	0	0	62	0	0	27	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	
Median Width(ft)	Leit	0	Rigit	Leit	Len 0	Rigit	Leit	0	Nigili	Leit	0	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane		40			40			40			40	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	1.00	1.00	1.00	9	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors	10	2	9	10	2	9	10	2	9	10	2	9
	Left	Thru		Left			Left	Thru		Left	Thru	
Detector Template	20	100		20	Thru 100		20	100			100	
Leading Detector (ft)										20		
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0		_	0.0		_	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	

RA ENGINEERING EXISTING AM TRAFFIC

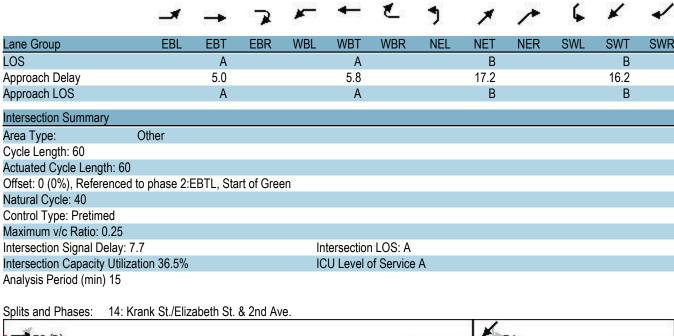
14: Krank St./Elizabeth St. & Second Ave.

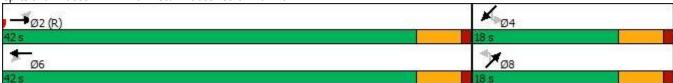
	_4	-	7	/	•	€.	•	×	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.0	37.0		37.0	37.0		13.0	13.0		13.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		48.6			48.6			7.3			7.2	
Actuated g/C Ratio		0.82			0.82			0.12			0.12	
v/c Ratio		0.11			0.07			0.29			0.13	
Control Delay		2.8			2.8			22.9			18.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		2.8			2.8			22.9			18.0	
LOS		Α			Α			С			В	
Approach Delay		2.8			2.8			22.9			18.0	
Approach LOS		Α			Α			С			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 59	9.4											

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.29 Intersection Signal Delay: 7.6 Intersection Capacity Utilization 26.9%

Intersection LOS: A


ICU Level of Service A

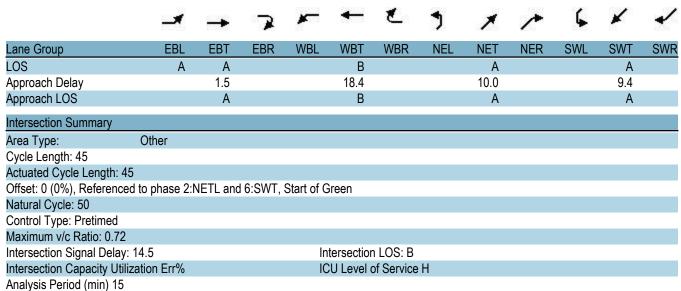

Analysis Period (min) 15

Splits and Phases: 14: Krank St./Elizabeth St. & Second Ave.

14: Krank St./Elizabeth St. & 2nd Ave.

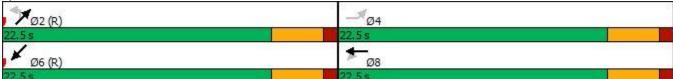
	0.000	*	1	4.000	~	1	1		•	¥	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
5	130	30	5	95	5	35	5	5	5	5	10
5	130	30	5	95	5	35	5	5	5	5	10
	Free			Free			Stop			Stop	
	0%			0%			0%			0%	
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
5	141	33	5	103	5	38	5	5	5	5	11
	None			None							
				445							
108			174			296	286	158	290	300	106
108			174			296	286	158	290	300	106
4.1			4.1								6.2
2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
100						94					99
1483			1403			641	620	888	650	609	949
EB 1	WB 1	NB 1	SB 1								
179	113	48	21								
5	5	38	5								
33	5	5	11								
1483	1403	657	764								
	0.00	0.07	0.03								
		В	Α								
		2.3									
n			IC	U Level o	of Service			Α			
	108 108 108 4.1 2.2 100 1483 EB 1 179 5 33 1483 0.00 0 0.2 A 0.2	5 130 5 130 Free 0% 0.92 0.92 5 141 None None 108 108 4.1 2.2 100 1483 EB 1 WB 1 179 113 5 5 33 5 1483 1403 0.00 0.00 0 0 0.2 0.4 A A 0.2 0.4	5 130 30 5 130 30 Free 0% 0.92 0.92 0.92 5 141 33 None None 108 4.1 2.2 100 1483 EB 1 WB 1 NB 1 179 113 48 5 5 38 33 5 5 1483 1403 657 0.00 0.00 0.07 0 0 6 0.2 0.4 10.9 A A B 0.2 0.4 10.9 B B 2.3	5 130 30 5 5 130 30 5 Free 0% 0.92 0.92 0.92 0.92 5 141 33 5 None 108 174 4.1 4.1 2.2 2.2 100 100 1483 1403 EB 1 WB 1 NB 1 SB 1 179 113 48 21 5 5 38 5 33 5 5 11 1483 1403 657 764 0.00 0.00 0.07 0.03 0 0 6 2 0.2 0.4 10.9 9.8 A A B A 0.2 0.4 10.9 9.8 B A	5 130 30 5 95 5 130 30 5 95 Free	5 130 30 5 95 5 5 130 30 5 95 5 Free Free O% O% 0.92 0.92 0.92 0.92 0.92 0.92 5 141 33 5 103 5 None None None A45 None A45 None Solution Soluti	5 130 30 5 95 5 35 5 130 30 5 95 5 35 Free Free O% O% O% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 5 141 33 5 103 5 38 None None None 174 296 108 174 296 4.1 4.1 7.1 2.2 2.2 2.2 3.5 100 100 94 1483 1403 641 EB1 WB1 NB1 SB1 179 113 48 21 15 5 38 5 33 5 5 11 1483 1403 657 764 0.00 0.00 0.07 0.03 0 0 6 2 0.2 0.4 10.9 9.8 A A B A 0.2 0.4 10.9 9.8 B A	5 130 30 5 95 5 35 5 5 130 30 5 95 5 35 5 Free Free Free Stop 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 5 141 33 5 103 5 38 5 108 174 296 286 108 174 296 286 4.1 4.1 7.1 6.5 2.2 2.2 3.5 4.0 100 100 94 99 1483 1403 641 620 EB1 WB1 NB1 SB1 179 113 48 21 5 5 38 5 33 5 5 11 1483 1403 657 764 0.00 0.00 0.07 0.03 0 0 6 2 0.2 0.4 10.9 9.8 B A 0.2 0.4 10.9 9.8 B A 0.2 0.4 10.9 9.8 B A	S	None	Total Content of the content of th

	٠	-	•	~	+	•	1	†	~	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	10	125	45	10	200	10	10	10	5	5	10	10
Future Volume (Veh/h)	10	125	147	75	200	10	114	14	27	5	13	10
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	11	136	160	82	217	11	124	15	29	5	14	11
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					453							
pX, platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC, conflicting volume	228			296			642	630	216	661	704	222
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	173			296			606	593	216	625	670	167
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			94			65	96	96	99	96	99
cM capacity (veh/h)	1346			1265			354	372	824	337	336	840
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	307	310	168	30								
Volume Left	11	82	124	5								
Volume Right	160	11	29	11								
cSH	1346	1265	395	431								
Volume to Capacity	0.01	0.06	0.43	0.07								
Queue Length 95th (ft)	1	5	54	6								
Control Delay (s)	0.3	2.6	20.7	14.0								
Lane LOS	Α	Α	С	В								
Approach Delay (s)	0.3	2.6	20.7	14.0								
Approach LOS			С	В								
Intersection Summary												
Average Delay			5.9									
Intersection Capacity Utiliza	ation		24.3%	IC	U Level c	f Service			Α			
Analysis Period (min)			15									

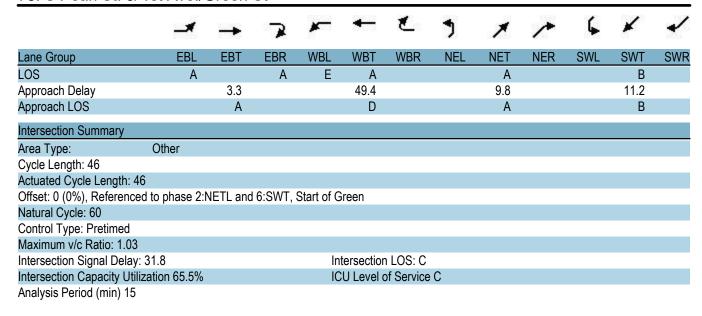

	Þ	-	7	~		•	1	1	~	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	5	140	5	5	150	5	10	5	5	15	5	5
Future Volume (Veh/h)	5	140	5	5	150	5	10	5	5	15	5	5
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	152	5	5	163	5	11	5	5	16	5	5
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	168			157			348	342	154	348	342	166
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	168			157			348	342	154	348	342	166
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			98	99	99	97	99	99
cM capacity (veh/h)	1410			1423			596	576	891	596	576	879
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	162	173	21	26								
Volume Left	5	5	11	16								
Volume Right	5	5	5	5								
cSH	1410	1423	641	631								
Volume to Capacity	0.00	0.00	0.03	0.04								
Queue Length 95th (ft)	0	0	3	3								
Control Delay (s)	0.3	0.2	10.8	11.0								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.3	0.2	10.8	11.0								
Approach LOS			В	В								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utiliz	zation		20.3%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	١	-	•	•	(24.03) (24.03)	•	1	Ť	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	5	150	10	10	205	10	5	5	5	10	5	40
Future Volume (Veh/h)	5	249	10	10	305	14	5	5	5	13	5	40
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	271	11	11	332	15	5	5	5	14	5	43
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		492										
pX, platoon unblocked												
vC, conflicting volume	347			282			694	656	276	656	654	340
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	347			282			694	656	276	656	654	340
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			98	99	99	96	99	94
cM capacity (veh/h)	1212			1280			329	381	762	369	382	703
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	287	358	15	62								
Volume Left	5	11	5	14								
Volume Right	11	15	5	43								
cSH	1212	1280	430	553								
Volume to Capacity	0.00	0.01	0.03	0.11								
Queue Length 95th (ft)	0	1	3	10								
Control Delay (s)	0.2	0.3	13.7	12.3								
Lane LOS	Α	Α	В	В								
Approach Delay (s)	0.2	0.3	13.7	12.3								
Approach LOS			В	В								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utiliza	ation		26.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15		, , , ,							
,												

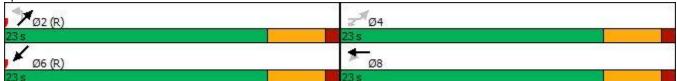
	_1	-	7	*	+	€.	•	*	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	1				4			र्स			₽.	
Traffic Volume (vph)	6	0	30	362	31	82	10	142	0	0	130	9
Future Volume (vph)	6	0	30	362	31	82	10	142	0	0	130	9
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.977						0.991	
Flt Protected	0.950				0.963			0.997				
Satd. Flow (prot)	1770	0	0	0	1753	0	0	1857	0	0	1846	0
Flt Permitted	0.593				0.963			0.982				
Satd. Flow (perm)	1105	0	0	0	1753	0	0	1829	0	0	1846	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		145			28						9	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		153			125			434			401	
Travel Time (s)		3.4			2.7			9.5			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	7	0	33	393	34	89	11	154	0	0	141	10
Shared Lane Traffic (%)												
Lane Group Flow (vph)	7	33	0	0	516	0	0	165	0	0	151	0
Enter Blocked Intersection	No	No	No	No								
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	Ţ.		12	, i		0	Ţ.		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm			Perm	NA		Perm	NA			NA	
Protected Phases					8			2			6	
Permitted Phases	4			8			2					
Minimum Split (s)	22.5			22.5	22.5		22.5	22.5			22.5	
Total Split (s)	22.5			22.5	22.5		22.5	22.5			22.5	
Total Split (%)	50.0%			50.0%	50.0%		50.0%	50.0%			50.0%	
Maximum Green (s)	18.0			18.0	18.0		18.0	18.0			18.0	
Yellow Time (s)	3.5			3.5	3.5		3.5	3.5			3.5	
All-Red Time (s)	1.0			1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)	0.0				0.0			0.0			0.0	
Total Lost Time (s)	4.5				4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0			7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0			11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0			0	0		0	0			0	
Act Effct Green (s)	18.0	0.0			18.0			18.0			18.0	
Actuated g/C Ratio	0.40	0.00			0.40			0.40			0.40	
v/c Ratio	0.02	0.23			0.72			0.23			0.20	
Control Delay	8.3	0.0			18.4			10.0			9.4	
Queue Delay	0.0	0.0			0.0			0.0			0.0	
Total Delay	8.3	0.0			18.4			10.0			9.4	


RA ENGINEERING EXISTING AM TRAFFIC

78: South Pearl St. & First Ave./Green St.


Allalysis i ellou (Illill) 15

Splits and Phases: 78: South Pearl St. & First Ave./Green St.



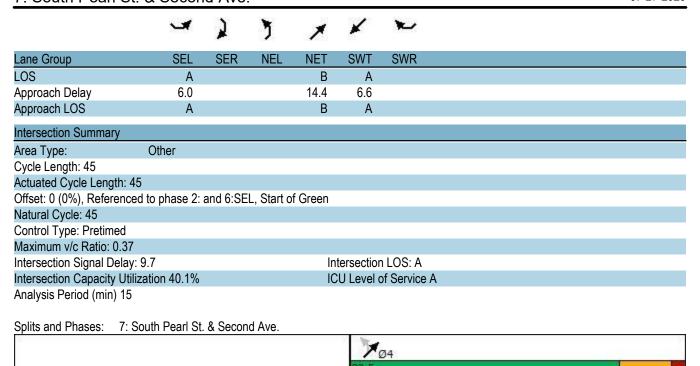
RA ENGINEERING EXISTING AM TRAFFIC

	_4	-	7	*	•	۲	•	*	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*		7	7	f.			र्स			₽.	
Traffic Volume (vph)	10	0	50	653	84	54	6	95	0	0	218	19
Future Volume (vph)	10	0	247	653	113	54	6	95	0	0	218	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.951						0.989	
Flt Protected	0.950			0.950				0.997				
Satd. Flow (prot)	1770	0	1583	1770	1771	0	0	1857	0	0	1842	0
Flt Permitted	0.643			0.950				0.978				
Satd. Flow (perm)	1198	0	1583	1770	1771	0	0	1822	0	0	1842	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			268		59						11	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		153			125			414			401	
Travel Time (s)		3.4			2.7			9.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	0	268	710	123	59	7	103	0	0	237	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	11	0	268	710	182	0	0	110	0	0	258	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0	, i		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm		Perm	Perm	NA		Perm	NA			NA	
Protected Phases					8			2			6	
Permitted Phases	4		4	8			2					
Minimum Split (s)	23.0		23.0	23.0	23.0		23.0	23.0			23.0	
Total Split (s)	23.0		23.0	23.0	23.0		23.0	23.0			23.0	
Total Split (%)	50.0%		50.0%	50.0%	50.0%		50.0%	50.0%			50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0		18.0	18.0			18.0	
Yellow Time (s)	4.0		4.0	4.0	4.0		4.0	4.0			4.0	
All-Red Time (s)	1.0		1.0	1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	5.0		5.0	5.0	5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0		7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0		0	0	0		0	0			0	
Act Effct Green (s)	18.0		18.0	18.0	18.0			18.0			18.0	
Actuated g/C Ratio	0.39		0.39	0.39	0.39			0.39			0.39	
v/c Ratio	0.02		0.34	1.03	0.25			0.15			0.35	
Control Delay	8.9		3.1	60.2	7.7			9.8			11.2	
Queue Delay	0.0		0.0	0.0	0.0			0.0			0.0	
Total Delay	8.9		3.1	60.2	7.7			9.8			11.2	

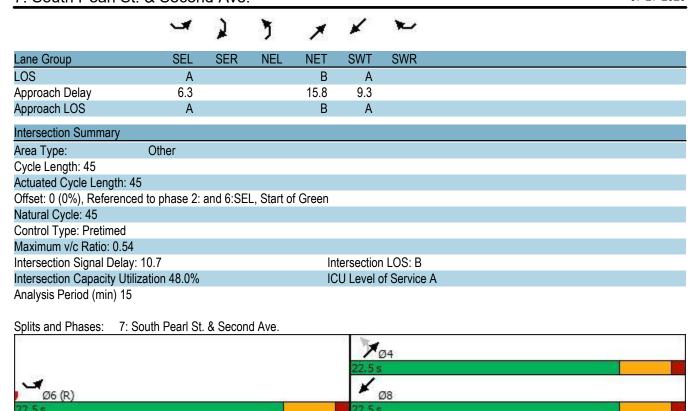
Splits and Phases: 78: S Pearl St. & 1st Ave./Green St

	4	×	Ì	r	×	•	7	*	A	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	5	35	5	5	5	40	50	5	0	20	5
Future Volume (vph)	0	5	35	5	5	5	40	50	5	0	20	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	5	38	5	5	5	43	54	5	0	22	5
Direction, Lane #	SE 1	NW 1	NE 1	SW 1								
Volume Total (vph)	43	15	102	27								
Volume Left (vph)	0	5	43	0								
Volume Right (vph)	38	5	5	5								
Hadj (s)	-0.50	-0.10	0.09	-0.08								
Departure Headway (s)	3.7	4.1	4.1	4.0								
Degree Utilization, x	0.04	0.02	0.12	0.03								
Capacity (veh/h)	936	841	849	870								
Control Delay (s)	6.9	7.2	7.7	7.2								
Approach Delay (s)	6.9	7.2	7.7	7.2								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			7.4									
Level of Service			Α									
Intersection Capacity Utilizat	tion		23.7%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	J	×	Ì	~	×	•	7	×	~	Ĺ	×	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	10	55	5	5	5	20	45	5	5	35	5
Future Volume (vph)	0	17	252	5	12	5	49	45	5	5	35	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	18	274	5	13	5	53	49	5	5	38	5
Direction, Lane #	SE 1	NW 1	NE 1	SW 1								
Volume Total (vph)	292	23	107	48								
Volume Left (vph)	0	5	53	5								
Volume Right (vph)	274	5	5	5								
Hadj (s)	-0.53	-0.05	0.11	-0.01								
Departure Headway (s)	3.8	4.5	4.7	4.7								
Degree Utilization, x	0.31	0.03	0.14	0.06								
Capacity (veh/h)	920	746	715	709								
Control Delay (s)	8.4	7.6	8.5	8.0								
Approach Delay (s)	8.4	7.6	8.5	8.0								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			8.4									
Level of Service			Α									
Intersection Capacity Utilizat	ion		19.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									


	4	×	7	~	×	•	7	×	~	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ħ			ન		7		7		4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	13	4	3	6	0	5	0	12	4	17	14
Future Volume (vph)	0	13	4	3	6	0	5	0	12	4	17	14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	14	4	3	7	0	5	0	13	4	18	15
Direction, Lane#	SE 1	NW 1	NE 1	NE 2	SW 1							
Volume Total (vph)	18	10	5	13	37							
Volume Left (vph)	0	3	5	0	4							
Volume Right (vph)	4	0	0	13	15							
Hadj (s)	-0.10	0.09	0.53	-0.67	-0.19							
Departure Headway (s)	3.9	4.1	5.1	3.9	3.9							
Degree Utilization, x	0.02	0.01	0.01	0.01	0.04							
Capacity (veh/h)	898	856	689	909	914							
Control Delay (s)	7.0	7.2	7.0	5.8	7.1							
Approach Delay (s)	7.0	7.2	6.1		7.1							
Approach LOS	Α	Α	Α		Α							
Intersection Summary												
Delay			6.8									
Level of Service			Α									
Intersection Capacity Utiliza	tion		20.0%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

	4	×	Ì	~	×	*	7	×	~	Ĺ	K	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		1			ર્ન		7		7		4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	0	14	2	0	8	0	12	0	18	0	8	2
Future Volume (vph)	0	20	3	0	11	0	16	0	18	0	8	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	22	3	0	12	0	17	0	20	0	9	2
Direction, Lane #	SE 1	NW 1	NE 1	NE 2	SW 1							
Volume Total (vph)	25	12	17	20	11							
Volume Left (vph)	0	0	17	0	0							
Volume Right (vph)	3	0	0	20	2							
Hadj (s)	-0.04	0.03	0.53	-0.67	-0.08							
Departure Headway (s)	4.0	4.1	5.1	3.9	4.0							
Degree Utilization, x	0.03	0.01	0.02	0.02	0.01							
Capacity (veh/h)	887	870	688	897	877							
Control Delay (s)	7.1	7.1	7.0	5.8	7.1							
Approach Delay (s)	7.1	7.1	6.4		7.1							
Approach LOS	Α	Α	Α		Α							
Intersection Summary												
Delay			6.8									
Level of Service			Α									
Intersection Capacity Utilizat	tion		20.0%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									


DETAIL CAPACITY ANALYSIS REPORT APPENDIX C2 - FUTURE CONDITIONS

	4	1	7	×	K	×
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	W	JER	. 166	स्	1	O.H.
Traffic Volume (vph)	67	65	68	150	100	70
Future Volume (vph)	67	65	68	150	100	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.933	1.00	1.00	1.00	0.945	1.00
Flt Protected	0.975			0.985	0.0-10	
Satd. Flow (prot)	1694	0	0	1835	1760	0
Flt Permitted	0.975	- 0	- 0	0.860	1700	
Satd. Flow (perm)	1694	0	0	1602	1760	0
Right Turn on Red	1034	Yes	U	1002	1700	Yes
Satd. Flow (RTOR)	71	162			76	165
	31			31	31	
Link Speed (mph)						
Link Distance (ft)	191			422	731	
Travel Time (s)	4.2	0.00	0.00	9.3	16.1	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	73	71	74	163	109	76
Shared Lane Traffic (%)						
Lane Group Flow (vph)	144	0	0	237	185	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	48			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16	9	16			9
Turn Type	Prot		Perm	NA	NA	
Protected Phases	6			4	8	
Permitted Phases			4			
Minimum Split (s)	22.5		22.5	22.5	22.5	
Total Split (s)	22.5		22.5	22.5	22.5	
Total Split (%)	50.0%		50.0%	50.0%	50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0	
Yellow Time (s)	3.5		3.5	3.5	3.5	
All-Red Time (s)	1.0		1.0	1.0	1.0	
Lost Time Adjust (s)	0.0		1.0	0.0	0.0	
Total Lost Time (s)	4.5			4.5	4.5	
	4.5			4.5	4.5	
Lead/Lag						
Lead-Lag Optimize?	7.0		7.0	7.0	7.0	
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	18.0			18.0	18.0	
Actuated g/C Ratio	0.40			0.40	0.40	
v/c Ratio	0.20			0.37	0.25	
Control Delay	6.0			14.4	6.6	
Queue Delay	0.0			0.0	0.0	
Total Delay	6.0			14.4	6.6	

Ø6 (R)

	4	7	7	×	K	×
Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	Y	VEIT		4	1	J.,, (
Traffic Volume (vph)	63	68	113	115	180	119
Future Volume (vph)	83	68	113	115	180	181
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.939	1.00	1.00	1.00	0.932	1.00
Flt Protected	0.973			0.976	0.002	
Satd. Flow (prot)	1702	0	0	1818	1736	0
Flt Permitted	0.973	U	- 0	0.617	1700	- 0
Satd. Flow (perm)	1702	0	0	1149	1736	0
Right Turn on Red	1702	Yes	U	1143	1730	Yes
Satd. Flow (RTOR)	74	165			134	162
	31			21	31	
Link Speed (mph)				31		
Link Distance (ft)	781			422	365	
Travel Time (s)	17.2	0.00	0.00	9.3	8.0	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	90	74	123	125	196	197
Shared Lane Traffic (%)						
Lane Group Flow (vph)	164	0	0	248	393	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	48			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16	9	16			9
Turn Type	Prot		Perm	NA	NA	
Protected Phases	6			4	8	
Permitted Phases			4			
Minimum Split (s)	22.5		22.5	22.5	22.5	
Total Split (s)	22.5		22.5	22.5	22.5	
Total Split (%)	50.0%		50.0%	50.0%	50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0	
Yellow Time (s)	3.5		3.5	3.5	3.5	
All-Red Time (s)	1.0		1.0	1.0	1.0	
	0.0		1.0	0.0	0.0	
Lost Time Adjust (s)						
Total Lost Time (s)	4.5			4.5	4.5	
Lead/Lag						
Lead-Lag Optimize?	- ^		- ^	- ^	7.0	
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	18.0			18.0	18.0	
Actuated g/C Ratio	0.40			0.40	0.40	
v/c Ratio	0.23			0.54	0.51	
Control Delay	6.3			15.8	9.3	
Queue Delay	0.0			0.0	0.0	
Total Delay	6.3			15.8	9.3	

	_#	-	7	_	+	€.	•	*	/	Ļ	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	45	97	30	20	99	5	27	55	31	5	32	10
Future Volume (vph)	45	97	30	20	99	5	27	55	31	5	32	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.976			0.995			0.963			0.971	
Flt Protected		0.987			0.992			0.988			0.995	
Satd. Flow (prot)	0	1794	0	0	1839	0	0	1772	0	0	1800	0
Flt Permitted		0.913	•		0.952	•		0.904			0.970	
Satd. Flow (perm)	0	1660	0	0	1764	0	0	1622	0	0	1754	0
Right Turn on Red	•		Yes	•		Yes			Yes	•		Yes
Satd. Flow (RTOR)		33			5	. 00		29	. 00		11	. 00
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		226			199			321			521	
Travel Time (s)		5.0			4.4			7.1			11.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	105	33	22	108	5	29	60	34	5	35	11
Shared Lane Traffic (%)	10	100			100				0.		- 00	
Lane Group Flow (vph)	0	187	0	0	135	0	0	123	0	0	51	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LGIL	0	rtigiit	Leit	0	Trigit	LGIL	0	rtigiit	Leit	0	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane		70			70			40			70	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	10	2	3	10	2	9	1	2	3	10	2	9
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	CITEX	CITEX		CITEX	CITEX		CITEX	CITEX		CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0		
	0.0			0.0	94		0.0			0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6										
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	D	0.0		D	0.0		D	0.0		D	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	_	2		_	6		•	8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	40.0	40.0		40.0	4.5.5							
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	

14: Krank St./Elizabeth St. & Second Ave.

	_#	-	7	*	-	€.	7	×	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.0	37.0		37.0	37.0		13.0	13.0		13.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		43.1			43.1			8.8			8.8	
Actuated g/C Ratio		0.73			0.73			0.15			0.15	
v/c Ratio		0.15			0.10			0.46			0.19	
Control Delay		3.6			3.9			22.9			18.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		3.6			3.9			22.9			18.6	
LOS		Α			Α			С			В	
Approach Delay		3.6			3.9			22.9			18.6	
Approach LOS		Α			Α			С			В	
Intersection Summary												

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 58.8

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.46 Intersection Signal Delay: 10.0 Intersection Capacity Utilization 35.3%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 14: Krank St./Elizabeth St. & Second Ave.

	⊸ #	-	7	*	•	٤	•	×	/	Ĺ	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	40	95	29	22	200	5	34	36	28	10	41	10
Future Volume (vph)	42	115	29	22	262	5	34	36	28	10	41	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.979			0.998			0.962			0.973	
Flt Protected		0.989			0.996			0.983			0.992	
Satd. Flow (prot)	0	1804	0	0	1852	0	0	1761	0	0	1798	0
Flt Permitted		0.889			0.974			0.877			0.950	
Satd. Flow (perm)	0	1621	0	0	1811	0	0	1572	0	0	1722	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29			3			30			14	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		226			199			321			521	
Travel Time (s)		5.0			4.4			7.1			11.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	46	125	32	24	285	5	37	39	30	11	45	14
Shared Lane Traffic (%)		0	<u> </u>				<u> </u>					
Lane Group Flow (vph)	0	203	0	0	314	0	0	106	0	0	70	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	0	rugiic	20.0	0	, agaic	2010	0	rugiic	2010	0	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6			8			4		
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.0	37.0		37.0	37.0		13.0	13.0		13.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag		0.0			0.0			0.0			0.0	
Lead-Lag Optimize?												
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	0	37.0			37.0			13.0		0	13.0	
Actuated g/C Ratio		0.62			0.62			0.22			0.22	
v/c Ratio		0.20			0.02			0.29			0.18	
Control Delay		4.9			6.1			17.4			17.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		4.9			6.1			17.4			17.6	
i olai Dolay		7.5			0.1			17.7			17.0	

Lanes, Volumes, Timings 14: Krank St./Elizabeth St. & Second Ave.

	_#	-	7	*		€.	7	*	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
LOS		Α			Α			В			В	
Approach Delay		4.9			6.1			17.4			17.6	
Approach LOS		Α			Α			В			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 0 (0%), Referenced	I to phase 2:I	EBTL, Sta	rt of Gree	en								
Natural Cycle: 40												
Control Type: Pretimed												
Maximum v/c Ratio: 0.29												
Intersection Signal Delay:	8.6			In	tersection	n LOS: A						
Intersection Capacity Utiliz	ation 36.2%			IC	CU Level of	of Service	Α					
Analysis Period (min) 15												
Splits and Phases: 14: k	Krank St./Eliz	abeth St.	& Secon	d Ave.								
J → Ø2 (R)								K	0 4			-
42 s								18 s				- 000
*								4				-

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	148	42	19	111	5	46	17	17	5	19	10
Future Vol, veh/h	5	148	42	19	111	5	46	17	17	5	19	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	·-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	161	46	21	121	5	50	18	18	5	21	11
Major/Minor I	Major1			Major2			Minor1		1	Minor2		
Conflicting Flow All	126	0	0	207	0	0	376	362	184	378	383	124
Stage 1	-	-	-	-	-	-	194	194	-	166	166	-
Stage 2	-	-	-	-	-	-	182	168	-	212	217	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1460	-	-	1364	-	-	581	565	858	580	550	927
Stage 1	-	-	-	-	-	-	808	740	-	836	761	-
Stage 2	-	-	_	_	_	-	820	759	-	790	723	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1460	-	-	1364	-	-	548	553	858	544	538	927
Mov Cap-2 Maneuver	-	-	-	-	-	-	548	553	-	544	538	-
Stage 1	-	-	-	-	-	-	805	737	-	833	748	-
Stage 2	-	-	-	-	-	-	775	746	-	751	720	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			1.1			12.1			11.2		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		595	1460	-	_	1364	-	-	615			
HCM Lane V/C Ratio		0.146	0.004	-	-	0.015	-	-	0.06			
HCM Control Delay (s)		12.1	7.5	0	-	7.7	0	-	11.2			
HCM Lane LOS		В	A	A	-	Α	A	-	В			
HCM 95th %tile Q(veh))	0.5	0	-	-	0	-	-	0.2			

Intersection												
Int Delay, s/veh	7.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	10	139	53	20	213	10	19	20	15	5	21	10
Future Vol, veh/h	10	139	155	85	213	10	123	24	37	5	24	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-		-	·-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	151	168	92	232	11	134	26	40	5	26	11
Major/Minor	Major1		I	Major2		1	Minor1			Minor2		
Conflicting Flow All	243	0	0	319	0	0	697	684	235	712	763	238
Stage 1		-	-	-	_	-	257	257		422	422	
Stage 2	-	-	-	-	-	-	440	427	-	290	341	-
Critical Hdwy	4.12	-	_	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-		4.018	3.318	3.518		3.318
Pot Cap-1 Maneuver	1323	-	-	1241	-	-	356	371	804	347	334	801
Stage 1	-	-	-	-	-	-	748	695	-	609	588	-
Stage 2	-	-	-	-	-	-	596	585	-	718	639	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1323	-	-	1241	-	-	304	336	804	288	302	801
Mov Cap-2 Maneuver	-	-	-	-	-	-	304	336	-	288	302	-
Stage 1	-	-	-	-	-	-	741	688	-	603	537	-
Stage 2	-	-	-	-	-	-	511	535	-	650	633	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.2			27.9			16.4		
HCM LOS							D			С		
Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		352	1323	-	-	1241	-		357			
HCM Lane V/C Ratio			0.008	-	-	0.074	-	-	0.119			
HCM Control Delay (s)		27.9	7.7	0	-	8.1	0	-	16.4			
HCM Lane LOS		D	Α	A	-	Α	A	-	С			
HCM 95th %tile Q(veh))	3.4	0	-	-	0.2	-	-	0.4			
,												

	۶	-	•	1	+	•	1	1	1	/	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	5	163	10	5	160	13	10	5	5	26	5	15
Future Volume (vph)	5	163	10	5	160	13	10	5	5	26	5	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.992			0.990			0.968			0.956	
Flt Protected		0.999			0.999			0.974			0.972	
Satd. Flow (prot)	0	1846	0	0	1842	0	0	1756	0	0	1731	0
Flt Permitted		0.995			0.995			0.810			0.812	
Satd. Flow (perm)	0	1839	0	0	1835	0	0	1461	0	0	1446	0
Right Turn on Red			Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)		10			13			5			16	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		80			645			289			419	
Travel Time (s)		1.8			14.2			6.4			9.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	177	11	5	174	14	11	5	5	28	5	16
Shared Lane Traffic (%)		.,,			.,,,							10
Lane Group Flow (vph)	0	193	0	0	193	0	0	21	0	0	49	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LGIL	0	rtigiit	Leit	0	Trigit	LGIL	0	rtigrit	Leit	0	rtigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane		70			70			70			70	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	10	2	3	10	2	9	1	2	3	10	2	9
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	CITEX	CITEX		CITEX	CITEX		CITEX	CITEX		CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s) Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0		
	0.0			0.0	94		0.0			0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6										
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	D	0.0		D	0.0		D	0.0		D	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	•	2		_	6		•	8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	

8: Bogart Terrace/Slingerland St. & Second Ave.

	•	-	•	1		•	1	Î	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.5	37.5		37.5	37.5		13.5	13.5		13.5	13.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		50.0			50.0			6.9			6.9	
Actuated g/C Ratio		0.83			0.83			0.12			0.12	
v/c Ratio		0.13			0.13			0.12			0.27	
Control Delay		2.4			2.4			21.1			21.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		2.4			2.4			21.1			21.4	
LOS		Α			Α			С			С	
Approach Delay		2.4			2.4			21.1			21.4	
Approach LOS		Α			Α			С			С	

Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 59.9

Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.27 Intersection Signal Delay: 5.3 Intersection Capacity Utilization 23.1%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 8: Bogart Terrace/Slingerland St. & Second Ave.

	۶	-	•	1	+	•	4	1	~	/	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	5	185	10	10	220	20	5	5	5	26	5	40
Future Volume (vph)	5	284	10	10	320	24	5	5	5	29	5	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.991			0.955			0.927	
Flt Protected		0.999			0.999			0.984			0.980	
Satd. Flow (prot)	0	1852	0	0	1844	0	0	1750	0	0	1692	0
Flt Permitted		0.996			0.991			0.922			0.863	
Satd. Flow (perm)	0	1846	0	0	1829	0	0	1640	0	0	1490	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			12			5			43	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		185			72			215			118	
Travel Time (s)		4.1			1.6			4.7			2.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	309	11	11	348	26	5	5	5	32	5	43
Shared Lane Traffic (%)					0.0					<u> </u>		
Lane Group Flow (vph)	0	325	0	0	385	0	0	15	0	0	80	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	0	rugiit	LOIC	0	, agait	20.0	0	rugiic	2010	0	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	O	0. 2.		0	O		O	O		O	O	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI LX			OI LX			OI · EX			OI · EX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2		1 31111	6		1 01111	8		1 31111	4	
Permitted Phases	2			6			8			4	<u> </u>	
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase				3			J			7	T	
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	
minimum minual (3)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	

18: Bogart Ter./Slingerland St. & Second Ave.

	١	-	•	1		•	1	1	-	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Total Split (s)	42.0	42.0		42.0	42.0		18.0	18.0		18.0	18.0	
Total Split (%)	70.0%	70.0%		70.0%	70.0%		30.0%	30.0%		30.0%	30.0%	
Maximum Green (s)	37.5	37.5		37.5	37.5		13.5	13.5		13.5	13.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		48.5			48.5			7.2			7.2	
Actuated g/C Ratio		0.82			0.82			0.12			0.12	
v/c Ratio		0.21			0.25			0.07			0.36	
Control Delay		2.9			3.1			18.6			17.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		2.9			3.1			18.6			17.6	
LOS		Α			Α			В			В	
Approach Delay		2.9			3.1			18.6			17.6	
Approach LOS		Α			Α			В			В	

Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 58.8

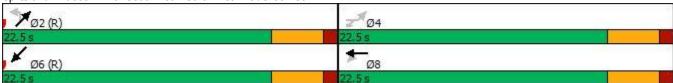
Natural Cycle: 40

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.36 Intersection Signal Delay: 4.7 Intersection Capacity Utilization 30.7%

Intersection LOS: A ICU Level of Service A

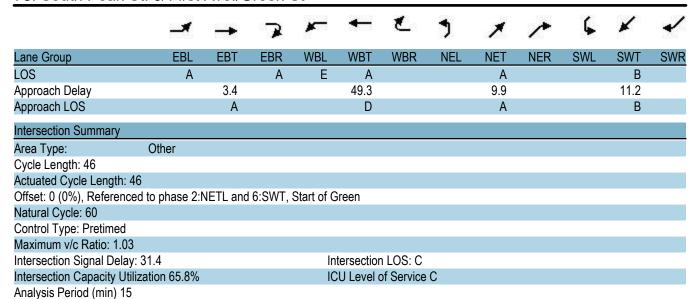
Analysis Period (min) 15

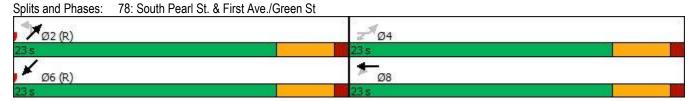
Splits and Phases: 18: Bogart Ter./Slingerland St. & Second Ave.


	_	-	3	*	•	۲	•	*	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*		7	7	7			र्स			₽.	
Traffic Volume (vph)	14	0	38	362	37	82	19	142	0	0	145	26
Future Volume (vph)	14	0	38	362	37	82	19	142	0	0	145	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.897						0.980	
Flt Protected	0.950			0.950				0.994				
Satd. Flow (prot)	1770	0	1583	1770	1671	0	0	1852	0	0	1825	0
Flt Permitted	0.674			0.950				0.958				
Satd. Flow (perm)	1255	0	1583	1770	1671	0	0	1785	0	0	1825	0
Right Turn on Red			No			No			Yes			Yes
Satd. Flow (RTOR)											24	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		153			125			566			401	
Travel Time (s)		3.4			2.7			12.4			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	15	0	41	393	40	89	21	154	0	0	158	28
Shared Lane Traffic (%)												
Lane Group Flow (vph)	15	0	41	393	129	0	0	175	0	0	186	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm		Perm	Perm	NA		Perm	NA			NA	
Protected Phases					8			2			6	
Permitted Phases	4		4	8			2					
Minimum Split (s)	22.5		22.5	22.5	22.5		22.5	22.5			22.5	
Total Split (s)	22.5		22.5	22.5	22.5		22.5	22.5			22.5	
Total Split (%)	50.0%		50.0%	50.0%	50.0%		50.0%	50.0%			50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0		18.0	18.0			18.0	
Yellow Time (s)	3.5		3.5	3.5	3.5		3.5	3.5			3.5	
All-Red Time (s)	1.0		1.0	1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	4.5		4.5	4.5	4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0		7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0		0	0	0		0	0			0	
Act Effct Green (s)	18.0		18.0	18.0	18.0			18.0			18.0	
Actuated g/C Ratio	0.40		0.40	0.40	0.40			0.40			0.40	
v/c Ratio	0.03		0.06	0.56	0.19			0.25			0.25	
Control Delay	8.5		8.7	14.1	9.8			10.2			10.2	
Queue Delay	0.0		0.0	0.0	0.0			0.0			0.0	
Total Delay	8.5		8.7	14.1	9.8			10.2			10.2	

78: South Pearl St. & First Ave./Green St.

	_#	-	7	*	-	€.	•	×	/	4	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
LOS	А		Α	В	Α			В			В	
Approach Delay		8.7			13.1			10.2			10.2	
Approach LOS		Α			В			В			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 0 (0%), Referenced t	o phase 2:I	NETL and	I 6:SWT,	Start of G	reen							
Natural Cycle: 45												
Control Type: Pretimed												
Maximum v/c Ratio: 0.56												
Intersection Signal Delay: 11	1.7			ln	tersection	LOS: B						
Intersection Capacity Utilizat	tion 49.0%			IC	U Level o	of Service	Α					


Analysis Period (min) 15


Splits and Phases: 78: South Pearl St. & First Ave./Green St.

	_4	-	7	*	•	۲	•	*	/	6	K	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*		7	7	f.			र्स			₽.	
Traffic Volume (vph)	16	0	57	653	88	54	11	95	0	0	218	24
Future Volume (vph)	16	0	254	653	117	54	11	95	0	0	218	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.952						0.987	
Flt Protected	0.950			0.950				0.995				
Satd. Flow (prot)	1770	0	1583	1770	1773	0	0	1853	0	0	1839	0
FIt Permitted	0.640			0.950				0.960				
Satd. Flow (perm)	1192	0	1583	1770	1773	0	0	1788	0	0	1839	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			276		59						14	
Link Speed (mph)		31			31			31			31	
Link Distance (ft)		153			125			414			401	
Travel Time (s)		3.4			2.7			9.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	0	276	710	127	59	12	103	0	0	237	26
Shared Lane Traffic (%)												
Lane Group Flow (vph)	17	0	276	710	186	0	0	115	0	0	263	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0	, i		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		48			48			48			48	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	16		9	16		9	16		9	16		9
Turn Type	Perm		Perm	Perm	NA		Perm	NA			NA	
Protected Phases					8			2			6	
Permitted Phases	4		4	8			2					
Minimum Split (s)	23.0		23.0	23.0	23.0		23.0	23.0			23.0	
Total Split (s)	23.0		23.0	23.0	23.0		23.0	23.0			23.0	
Total Split (%)	50.0%		50.0%	50.0%	50.0%		50.0%	50.0%			50.0%	
Maximum Green (s)	18.0		18.0	18.0	18.0		18.0	18.0			18.0	
Yellow Time (s)	4.0		4.0	4.0	4.0		4.0	4.0			4.0	
All-Red Time (s)	1.0		1.0	1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)	5.0		5.0	5.0	5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	7.0		7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0		11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0		0	0	0		0	0			0	
Act Effct Green (s)	18.0		18.0	18.0	18.0			18.0			18.0	
Actuated g/C Ratio	0.39		0.39	0.39	0.39			0.39			0.39	
v/c Ratio	0.04		0.35	1.03	0.26			0.16			0.36	
Control Delay	9.0		3.1	60.2	7.7			9.9			11.2	
Queue Delay	0.0		0.0	0.0	0.0			0.0			0.0	
Total Delay	9.0		3.1	60.2	7.7			9.9			11.2	

78: South Pearl St. & First Ave./Green St

Intersection	
Intersection Delay, s/veh	7.6
Intersection LOS	Α

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	4	6	41	5	6	7	45	60	5	7	27	5
Future Vol, veh/h	4	6	41	5	6	7	45	60	5	7	27	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	7	45	5	7	8	49	65	5	8	29	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	SE			NW			NE			SW		
Opposing Approach	NW			SE			SW			NE		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SW			NE			SE			NW		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NE			SW			NW			SE		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.1			7.3			7.9			7.4		
HCM LOS	Α			Α			Α			Α		

Lane	NELn1	NWLn1	SELn1	SWLn1	
Vol Left, %	41%	28%	8%	18%	
Vol Thru, %	55%	33%	12%	69%	
Vol Right, %	5%	39%	80%	13%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	110	18	51	39	
LT Vol	45	5	4	7	
Through Vol	60	6	6	27	
RT Vol	5	7	41	5	
Lane Flow Rate	120	20	55	42	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.138	0.022	0.058	0.048	
Departure Headway (Hd)	4.15	4.079	3.761	4.113	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	862	864	937	864	
Service Time	2.186	2.169	1.846	2.169	
HCM Lane V/C Ratio	0.139	0.023	0.059	0.049	
HCM Control Delay	7.9	7.3	7.1	7.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.5	0.1	0.2	0.2	

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	11	59	5	7	7	24	50	5	7	41	5
Future Vol, veh/h	2	18	256	5	14	7	53	50	5	7	41	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	20	278	5	15	8	58	54	5	8	45	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	SE			NW			NE			SW		
Opposing Approach	NW			SE			SW			NE		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SW			NE			SE			NW		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NE			SW			NW			SE		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			7.7			8.6			8.1		
HCM LOS	Α			Α			Α			Α		

Lane	NELn1	NWLn1	SELn1	SWLn1	
Vol Left, %	49%	19%	1%	13%	
Vol Thru, %	46%	54%	7%	77%	
Vol Right, %	5%	27%	93%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	108	26	276	53	
LT Vol	53	5	2	7	
Through Vol	50	14	18	41	
RT Vol	5	7	256	5	
Lane Flow Rate	117	28	300	58	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.155	0.036	0.32	0.075	
Departure Headway (Hd)	4.741	4.532	3.84	4.717	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	756	791	939	759	
Service Time	2.77	2.555	1.853	2.748	
HCM Lane V/C Ratio	0.155	0.035	0.319	0.076	
HCM Control Delay	8.6	7.7	8.7	8.1	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.5	0.1	1.4	0.2	

Movement	SEL	SET	SER	NWU	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT
Lane Configurations		T _P				र्स		7		7		4
Traffic Vol, veh/h	0	5	8	0	3	1	0	8	0	18	4	17
Future Vol, veh/h	0	5	8	0	3	1	0	8	0	18	4	17
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	9	0	3	1	0	9	0	20	4	18
Number of Lanes	0	1	0	0	0	1	0	1	0	1	0	1
Approach		SE			NW			NE			SW	
Opposing Approach		NW			SE			SW			NE	
Opposing Lanes		1			1			1			2	
Conflicting Approach Left		SW			NE			SE			NW	
Conflicting Lanes Left		1			2			1			1	
Conflicting Approach Right		NE			SW			NW			SE	
Conflicting Lanes Right		2			1			1			1	
HCM Control Delay		6.8			7.3			7.1			7	
HCM LOS		Α			Α			Α			Α	

Lane	NELn1	NELn2	NWLn1	SELn1	SWLn1
Vol Left, %	100%	0%	75%	0%	11%
Vol Thru, %	0%	0%	25%	38%	49%
Vol Right, %	0%	100%	0%	62%	40%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	8	18	4	13	35
LT Vol	8	0	3	0	4
Through Vol	0	0	1	5	17
RT Vol	0	18	0	8	14
Lane Flow Rate	9	20	4	14	38
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.012	0.021	0.005	0.014	0.041
Departure Headway (Hd)	5.086	3.886	4.209	3.681	3.871
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Сар	707	925	850	970	928
Service Time	2.794	1.594	2.238	1.711	1.881
HCM Lane V/C Ratio	0.013	0.022	0.005	0.014	0.041
HCM Control Delay	7.9	6.7	7.3	6.8	7
HCM Lane LOS	Α	Α	Α	Α	Α
HCM 95th-tile Q	0	0.1	0	0	0.1

Intersection

Intersection Delay, s/veh Intersection LOS

Movement	SWR
LaneConfigurations	
Traffic Vol, veh/h	14
Future Vol, veh/h	14
Peak Hour Factor	0.92
Heavy Vehicles, %	2
Mvmt Flow	15
Number of Lanes	0

Approach

Opposing Approach

Opposing Lanes

Conflicting Approach Left

Conflicting Lanes Left

Conflicting Approach Right

Conflicting Lanes Right

HCM Control Delay

HCM LOS

Intersection	
Intersection Delay, s/veh	7.2
Intersection LOS	Α

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		1			र्स		1		7		4	
Traffic Vol, veh/h	0	5	3	1	1	0	12	0	18	0	8	2
Future Vol, veh/h	0	11	4	1	4	0	16	0	18	0	8	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	12	4	1	4	0	17	0	20	0	9	2
Number of Lanes	0	1	0	0	1	0	1	0	1	0	1	0
Approach		SE		NW			NE				SW	
Opposing Approach		NW		SE			SW				NE	
Opposing Lanes		1		1			1				2	
Conflicting Approach Left		SW		NE			SE				NW	
Conflicting Lanes Left		1		2			1				1	
Conflicting Approach Right		NE		SW			NW				SE	
Conflicting Lanes Right		2		1			1				1	
HCM Control Delay		7		7.1			7.3				7	
HCM LOS		Α		Α			Α				Α	

Lane	NELn1	NELn2	NWLn1	SELn1	SWLn1
Vol Left, %	100%	0%	20%	0%	0%
Vol Thru, %	0%	0%	80%	73%	80%
Vol Right, %	0%	100%	0%	27%	20%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	16	18	5	15	10
LT Vol	16	0	1	0	0
Through Vol	0	0	4	11	8
RT Vol	0	18	0	4	2
Lane Flow Rate	17	20	5	16	11
Geometry Grp	7	7	2	2	5
Degree of Util (X)	0.025	0.021	0.006	0.017	0.012
Departure Headway (Hd)	5.077	3.877	4.067	3.859	3.978
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	708	927	878	926	901
Service Time	2.786	1.586	2.1	1.89	1.997
HCM Lane V/C Ratio	0.024	0.022	0.006	0.017	0.012
HCM Control Delay	7.9	6.7	7.1	7	7
HCM Lane LOS	Α	Α	Α	Α	Α
HCM 95th-tile Q	0.1	0.1	0	0.1	0

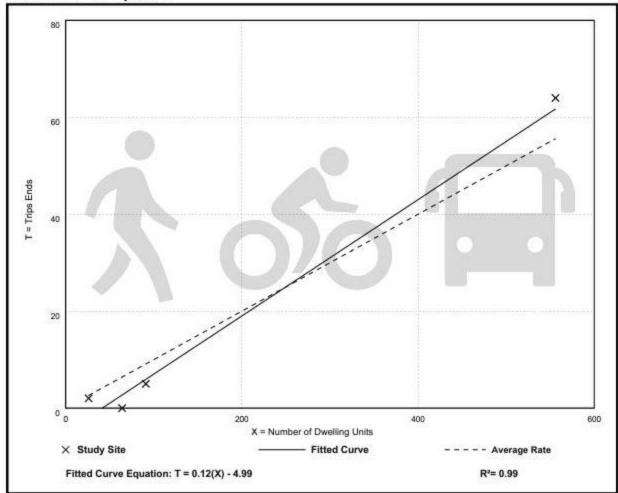
THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process
THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX D ITE TRIP GENERATION MANUAL EXCERPTS

Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 4 Avg. Num. of Dwelling Units: 184

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation		
0.10	0.00 - 0.12	0.04		

Data Plot and Equation

Multifamily Housing (Mid-Rise) (221)

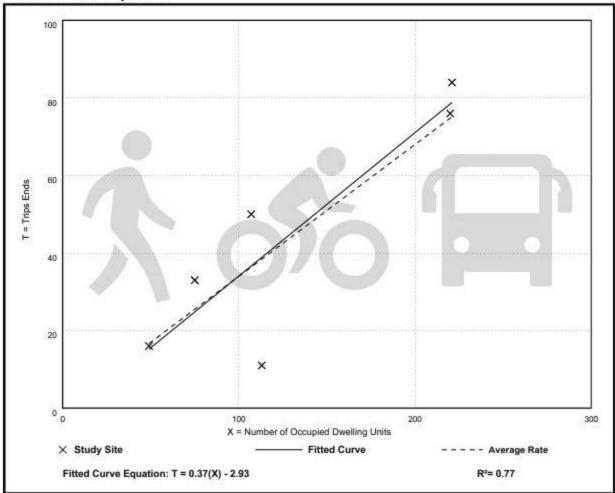
Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units

On a: Weekday,

PM Peak Hour of Generator

Setting/Location: Center City Core

Number of Studies: 6


Avg. Num. of Occupied Dwelling Units: 131

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.34	0.10 - 0.47	0.12

Data Plot and Equation

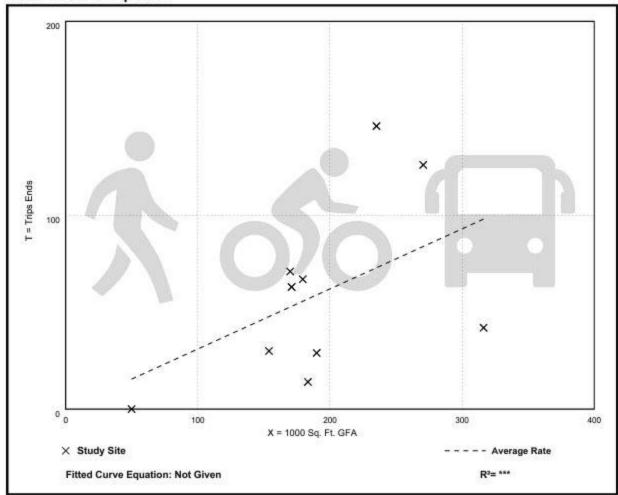
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban


Number of Studies: 10 Avg. 1000 Sq. Ft. GFA: 192

Directional Distribution: Not Available

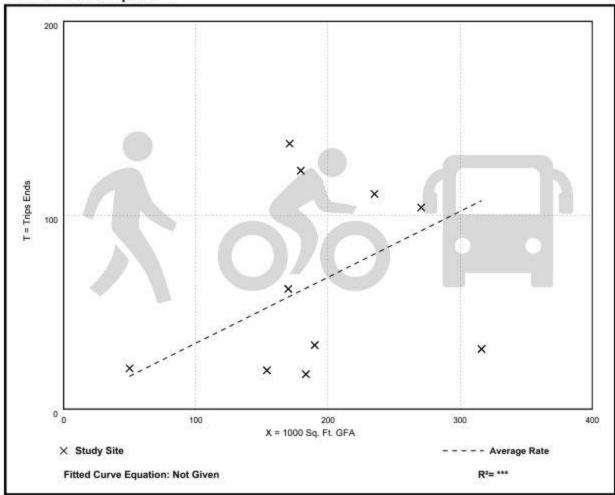
Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.31	0.00 - 0.62	0.19

Data Plot and Equation

General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator


Setting/Location: Dense Multi-Use Urban

Number of Studies: 10 Avg. 1000 Sq. Ft. GFA: 192

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.34	0.10 - 0.80	0.25

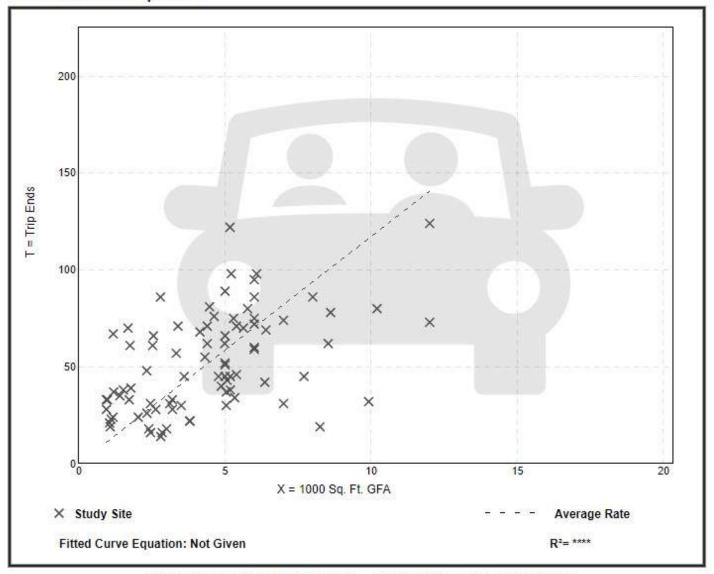
Day Care Center

(565)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 84 Avg. 1000 Sq. Ft. GFA: 4

Directional Distribution: 53% entering, 47% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
11.73	2.30 - 57.02	6.78

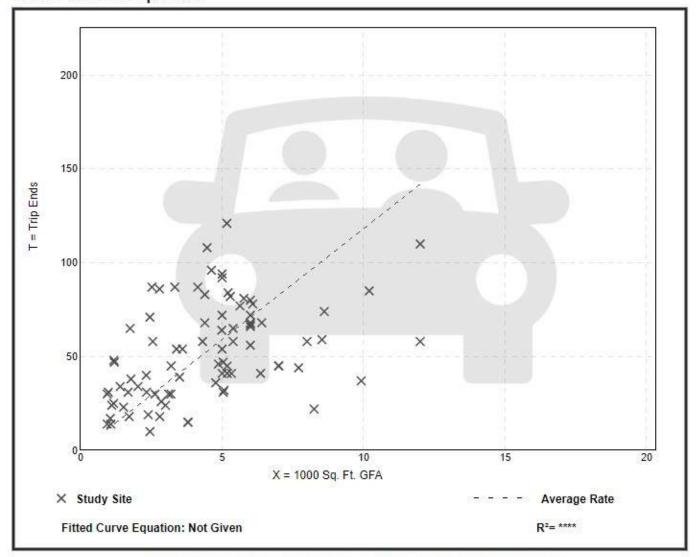
Day Care Center

(565)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

PM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 84 Avg. 1000 Sq. Ft. GFA: 4

Directional Distribution: 47% entering, 53% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
11.82	2.67 - 40.85	6.80

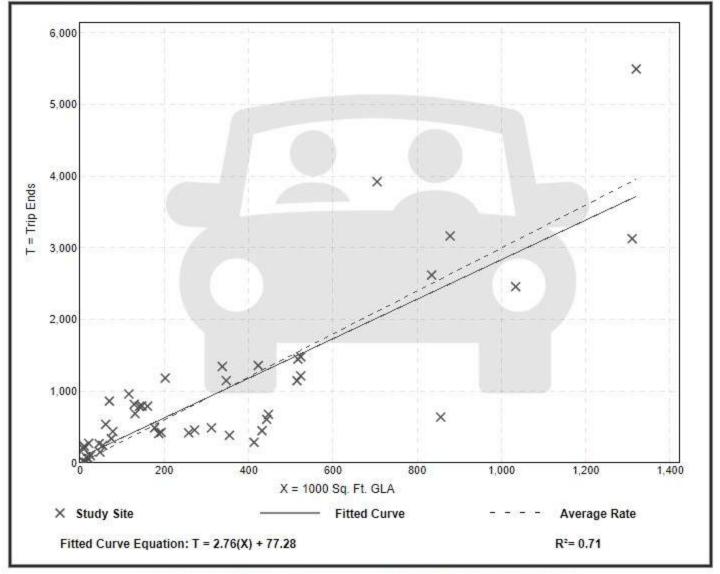
Shopping Center

(820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

AM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 47 Avg. 1000 Sq. Ft. GLA: 323

Directional Distribution: 54% entering, 46% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
3 00	0.70 - 23.74	1.85

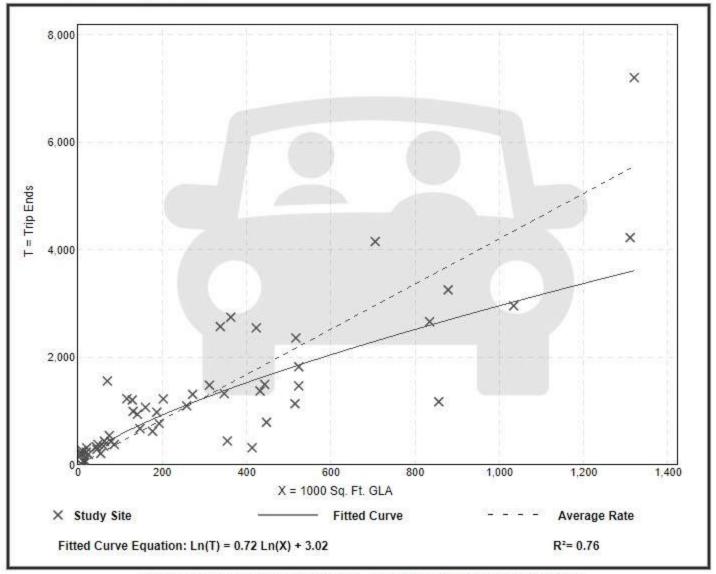
Shopping Center

(820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

PM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 53 Avg. 1000 Sq. Ft. GLA: 298

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
4.21	0.78 - 27.27	2.47

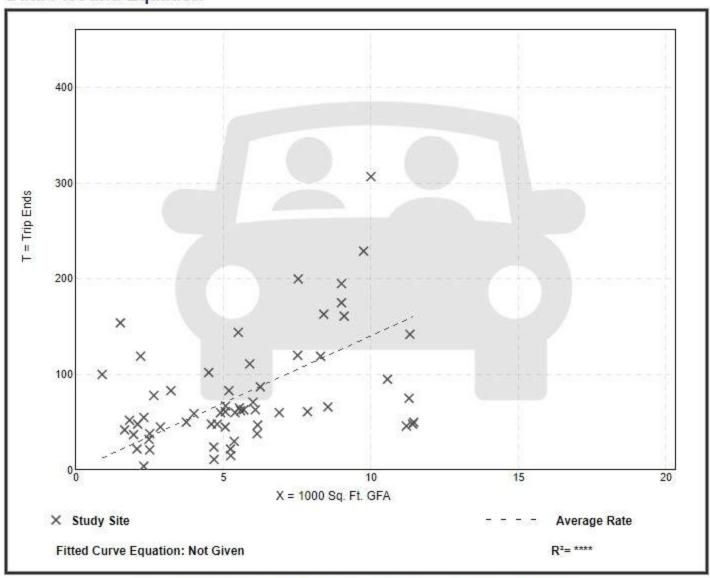
High-Turnover (Sit-Down) Restaurant

(932)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 60 Avg. 1000 Sq. Ft. GFA: 6

Directional Distribution: 57% entering, 43% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
14.04	1.74 - 112.49	11.29

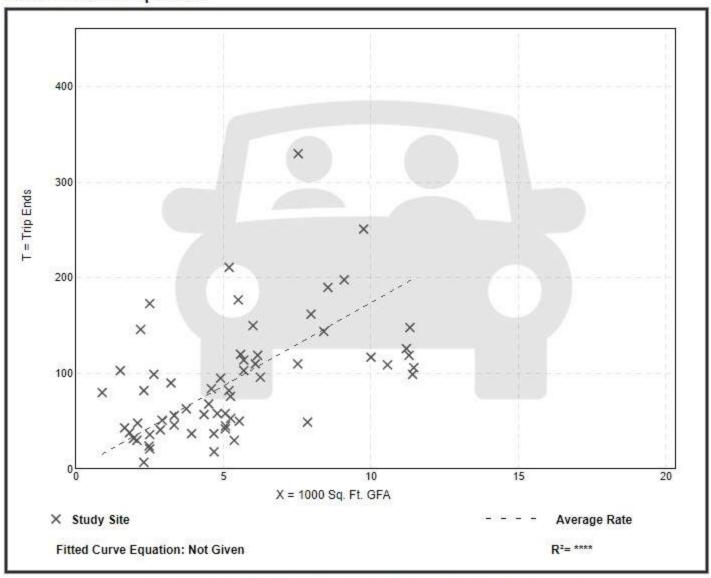
High-Turnover (Sit-Down) Restaurant

(932)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

PM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 61 Avg. 1000 Sq. Ft. GFA: 5

Directional Distribution: 52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

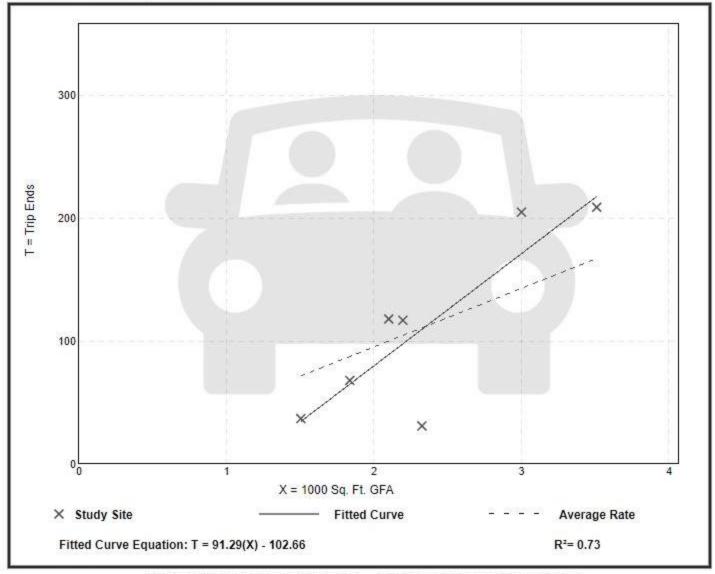
Average Rate	Range of Rates	Standard Deviation
17 41	3 04 - 89 99	11 71

Fast-Food Restaurant without Drive-Through Window (933)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 7 Avg. 1000 Sq. Ft. GFA: 2

Directional Distribution: 53% entering, 47% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

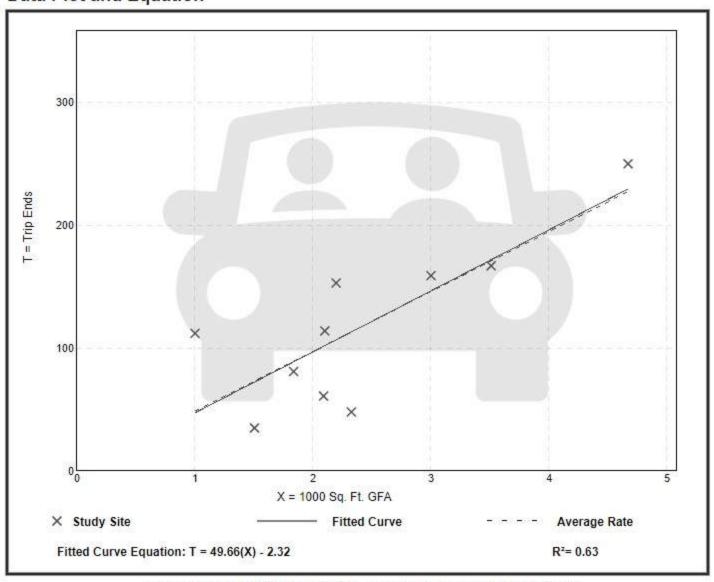
Average Rate	Range of Rates	Standard Deviation
47.66	13.33 - 68.33	20.18

Fast-Food Restaurant without Drive-Through Window

(933)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,


PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 10 Avg. 1000 Sq. Ft. GFA: 2

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

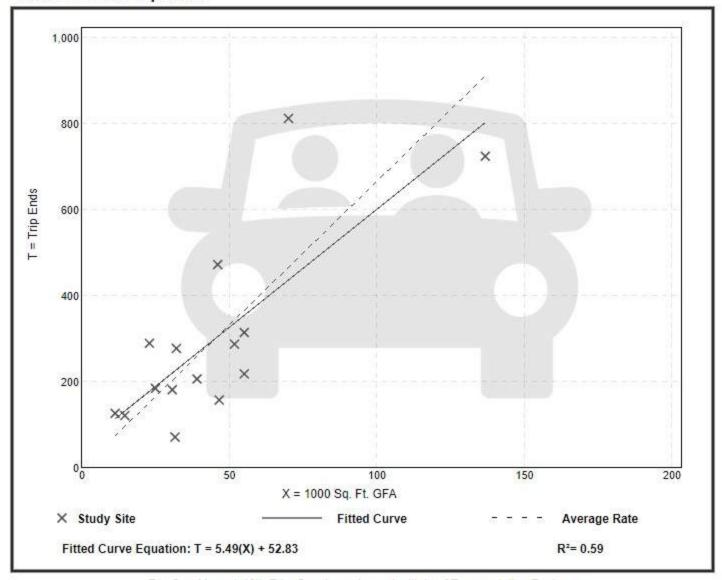
Supermarket

(850)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 15 Avg. 1000 Sq. Ft. GFA: 45

Directional Distribution: 52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
6.67	2.28 - 12.68	2.98

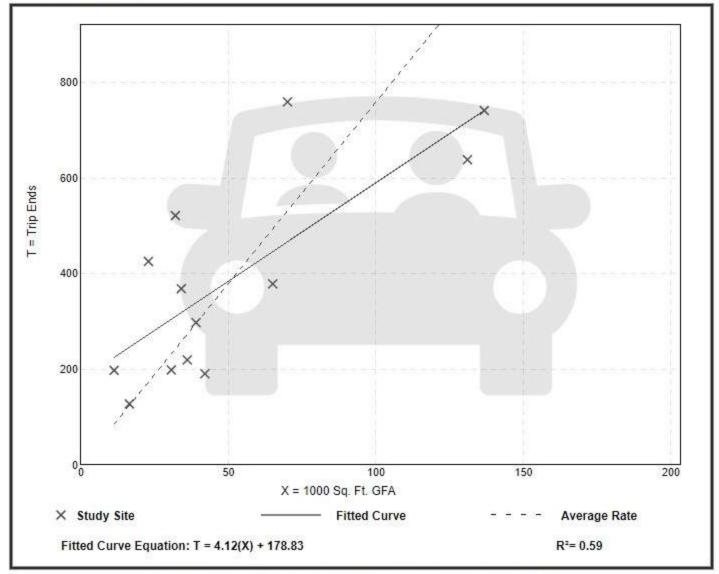
Supermarket

(850)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

PM Peak Hour of Generator


Setting/Location: General Urban/Suburban

Number of Studies: 13 Avg. 1000 Sq. Ft. GFA: 51

Directional Distribution: 52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
7.60	4.55 - 18.63	3.98

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT
TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process
THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX EINTERNAL CREDITS

RA Engineering Inc. 17665 Leslie Street - Unit 40 Newmarket ON L3Y 3E3 Phone:(905)235-9105

20040801 The Seventy Six for SED Trip Generation Estimates (10th Ed.) Calculation Sheet - AM Street Peak Hour VER0

Prepared By: Ian Reynolds Checked By: Ragu Nathan, P.Eng. Revision Date: June 19, 2020

			<u> </u>			<u>PM</u>	
_	B	<u>In</u>	Out	<u>Total</u>	<u>In</u>	Out	<u>Total</u>
Α	Residential (LUC 221: Multi-family, mid rise) 246 Units	22	61	83	64	41	105
В	Commercial Space - 51 KSF						
B.1	Office (LUC 710: General Office)						
	17.5 KSF (use average rate)	17	3	20	3	17	20
B.2	Commercial Center/Day Care (LUC 565)						
	5.4 KSF	31	28	59	28	32	60
B.3	General/Specialty Retail (LUC 820: Shopping Center)						
	8.0 KSF (use average rate)	5	3	8	14	16	30
B.4	Restaurant/Supermarket (20 KSF)						
B.4.a	Restaurant (LUC 932: High Turnover/Sit-down)	07	00	50	00	40	40
D 4 h	5.0 KSF (use average rate)	27	23	50	30	19	49
B.4.b	Restaurant (LUC 933: Fast-Food w/o Drive Thru)	30	20	50	28	29	57
B.4.c	2.0 KSF (use average rate) Supermarket (LUC 850)	30	20	50	28	29	57
D.4.C	13.0 KSF	30	20	50	61	59	120
	13.0 KGI	30	20	30	01	39	120
	Commercial Sub-total	140	97	237	164	172	336
	Total	162	158	320	228	213	441

C Credits

- 1. Subtract trips from # of existing units (occupied & unoccupied)
- 2. Subtract multi-use internal trips ↔ external trips
- 3. Subtract transit trips from external trips
- 4. Subtract walking trips from external trips
- 5. Subtract other? (i.e. lower car ownership, urban/infill, transit-friendly)

		<u> AM</u>			<u>PM</u>	
	<u>In</u>	Out	<u>Total</u>	<u>In</u>	Out	<u>Total</u>
Total Unadjusted	162	158	320	228	213	441
 (Internal Trips) 	23	26	49	93	92	185
= (External Trips)	139	132	271	135	121	256

*Note: Internal/external calculated using NCHRP 684 Internal Trip Capture Tool

Adjust for Urban Infill/Redevelopment

Step 1: Baseline Mode Share & Vehicle Occupancy (Appendix B)

AM Mode Share: 96%/98% PM mode share: 97%/96% AM Vehicle Occupancy: 1.13/1.09 PM Vehicle Occupancy: 1.15/1.21

Step 2: Study Site Mode Shares & Vehicle Occupancy (Appendix C)

Various multi-use land uses \to use 80% as vehicle trips for AM/PM inbound/outbound Vehicle occupancy: use 1.10 for AM & 1.40 for PM

Step 3: Vehicle Trips for Site

AM Peak Hour PM Peak Hour Inbound = $139 \times (80/96) \times (1.13/1.10)$ Inbound = $135 \times (80/97) \times (1.15/1.40)$ = 91 = 119 trips trips Outbound = $132 \times (80/98) \times (1.09/1.10)$ Outbound = $121 \times (80/96) \times (1.21/1.40)$ 107 trips trips Total = 226 trips Total = 178 trips

20040801 The Seventy Six for SED NCHRP 684 Internal Trip Capture Estimation Calculation Sheet - AM Street Peak Hour_VER0

	NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	The Seventy-Six		Organization:	RA Engineering Inc.							
Project Location:	Albany		Performed By:	lan Reynolds							
Scenario Description:	Proposed Project		Date:	2020-06-05							
Analysis Year:	Analysis Year: 2020		Checked By:	Ragu Nathan, P.Eng.							
Analysis Period:	AM Street Peak Hour		Date:	2020-06-19							

	Table 1	-A: Base Vehic	le-Trip Generation	ı Es	stimates (Single-Use Sit	e Estimate)		
Land Use	Developm	ent Data (<i>For In</i>	formation Only)		Estimated Vehicle-Trips ³			
Land Ose	ITE LUCs1	Quantity	Units		Total	Entering	Exiting	
Office	710	17.5	ksf		20	17	3	
Retail	820/850	21	ksf		58	35	23	
Restaurant	932/933	7	ksf		100	57	43	
Cinema/Entertainment					0			
Residential	221	246	units		83	22	61	
Hotel					0			
All Other Land Uses ²	565	5.4	ksf		59	31	28	
					320	162	158	

Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps			Exiting Trips				
Land Ose	Veh. Occ.4	eh. Occ.4 % Transit % Non-Motorized		Ī	Veh. Occ.4	% Transit	% Non-Motorized			
Office	1.06	0%	0%		1.06	0%	0%			
Retail	1.17	0%	0%		1.16	0%	0%			
Restaurant	1.52	0%	0%		1.52	0%	0%			
Cinema/Entertainment										
Residential	1.13	0%	0%		1.09	0%	0%			
Hotel										
All Other Land Uses ²	2.50	0%	0%		1.20	0%	0%			

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										

	Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		1	1	0	0	0					
Retail	1		4	0	1	0					
Restaurant	3	3		0	1	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	1	13	0		0					
Hotel	0	0	0	0	0						

Table 5-A: Computations Summary										
Total Entering Exitin										
All Person-Trips	444	249	195							
Internal Capture Percentage	14%	12%	15%							
External Vehicle-Trips ⁵	271	139	132							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Interna	Table 6-A: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips								
Office	28%	67%								
Retail	12%	22%								
Restaurant	21%	11%								
Cinema/Entertainment	N/A	N/A								
Residential	8%	23%								
Hotel	N/A	N/A								

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

RA Engineering Inc. 17665 Leslie Street - Unit 40 Newmarket ON L3Y 3E3 Phone:(905)235-9105

20040801 The Seventy Six for SED NCHRP 684 Internal Trip Capture Estimation Calculation Sheet - AM Street Peak Hour_VER0

Project Name:	The Seventy-Six
Analysis Period:	AM Street Peak Hour

	Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Tab	ole 7-A (D): Enter	ing Trips		-	Table 7-A (O): Exiting Trips					
Land Ose	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.06	17	18		1.06	3	3				
Retail	1.17	35	41		1.16	23	27				
Restaurant	1.52	57	87		1.52	43	65				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.13	22	25		1.09	61	66				
Hotel	1.00	0	0		1.00	0	0				

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (From)				Destination (To)							
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		1	2	0	0	0					
Retail	8		4	0	4	0					
Restaurant	20	9		0	3	2					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	1	13	0		0					
Hotel	0	0	0	0	0						

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)											
Origin (From)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		13	20	0	0	0						
Retail	1		44	0	1	0						
Restaurant	3	3		0	1	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	1	7	17	0		0						
Hotel	1	2	5	0	0							

Table 9-A (D): Internal and External Trips Summary (Entering Trips)											
Destination Land Use		Person-Trip Estimates				External Trips by Mode*					
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	5	13	18		12	0	0				
Retail	5	36	41		31	0	0				
Restaurant	18	69	87		45	0	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	2	23	25		20	0	0				
Hotel	0	0	0		0	0	0				
All Other Land Uses ³	0	78	78		31	0	0				

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)									
Origin Land Use	Person-Trip Estimates				External Trips by Mode*					
Origin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	2	1	3		1	0	0			
Retail	6	21	27		18	0	0			
Restaurant	7	58	65		38	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	15	51	66		47	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	34	34		28	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

$\langle \cdots \rangle$										
	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Project Name: The Seventy-Six Organization: RA Engineering Inc.									
Project Location:	Albany		Performed By:	lan Reynolds						
Scenario Description:	Proposed Project		Date:	2020-06-05						
Analysis Year:	2020		Checked By:	Ragu Nathan, P.Eng.						
Analysis Period:	PM Street Peak Hour		Date:	2020-06-19						

	Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)											
Land Use	Developm	ent Data (For In	formation Only)			Estimated Vehicle-Trips ³						
Land OSE	ITE LUCs1	Quantity	Units		Total	Entering	Exiting					
Office	710	17.5	ksf		20	3	17					
Retail	820/850	21	ksf		150	75	75					
Restaurant	932/933	7	ksf		106	58	48					
Cinema/Entertainment					0							
Residential	221	246	units		105	64	41					
Hotel					0							
All Other Land Uses ²	565	5.4	ksf		60	28	32					
					441	228	213					

	Table 2-P: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps			Exiting Trips					
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.⁴	% Transit	% Non-Motorized				
Office	1.11	0%	0%		1.07	0%	0%				
Retail	1.21	0%	0%		1.18	0%	0%				
Restaurant	1.52	0%	0%		1.52	0%	0%				
Cinema/Entertainment											
Residential	1.15	0%	0%		1.21	0%	0%				
Hotel											
All Other Land Uses ²	1.20	0%	0%		2.50	0%	0%				

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)				Destination (To)						
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										

Table 4-P: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)	Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		4	1	0	0	0				
Retail	1		26	0	23	0				
Restaurant	1	30		0	12	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	1	9	11	0		0				
Hotel	0	0	0	0	0					

Table 5-P: Computations Summary								
	Total	Entering	Exiting					
All Person-Trips	600	290	310					
Internal Capture Percentage	40%	41%	38%					
External Vehicle-Trips ⁵	256	135	121					
External Transit-Trips ⁶	0	0	0					
External Non-Motorized Trips ⁶	0	0	0					

Table 6-P: Internal Trip Capture Percentages by Land Use								
Land Use	Entering Trips	Exiting Trips						
Office	100%	28%						
Retail	47%	56%						
Restaurant	43%	59%						
Cinema/Entertainment	N/A	N/A						
Residential	47%	42%						
Hotel	N/A	N/A						

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be

. Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

RA Engineering Inc. 17665 Leslie Street - Unit 40 Newmarket ON L3Y 3E3 Phone:(905)235-9105

20040801 The Seventy Six for SED NCHRP 684 Internal Trip Capture Estimation Calculation Sheet - PM Street Peak Hour_VER0

Project Name:	The Seventy-Six
Analysis Period:	PM Street Peak Hour

	Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Table	7-P (D): Entering	g Trips			Table 7-P (O): Exiting Trips					
Land Ose	Veh. Occ.	Vehicle-Trips	Person-Trips*	1	Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.11	3	3		1.07	17	18				
Retail	1.21	75	91		1.18	75	89				
Restaurant	1.52	58	88		1.52	48	73				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.15	64	74		1.21	41	50				
Hotel	1.00	0	0		1.00	0	0				

	Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)										
Origin (From)				Destination (To)							
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		4	1	0	0	0					
Retail	2		26	4	23	4					
Restaurant	2	30		6	13	5					
Cinema/Entertainment	0	0	0		0	0					
Residential	2	21	11	0		2					
Hotel	0	0	0	0	0						

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		7	2	0	3	0
Retail	1		26	0	34	0
Restaurant	1	46		0	12	0
Cinema/Entertainment	0	4	3		3	0
Residential	2	9	12	0		0
Hotel	0	2	4	0	0	

	Table 9-P (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Pe	Person-Trip Estimates			External Trips by Mode*		
Destination Land Ose	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²
Office	3	0	3		0	0	0
Retail	43	48	91		40	0	0
Restaurant	38	50	88		33	0	0
Cinema/Entertainment	0	0	0	1	0	0	0
Residential	35	39	74	1	34	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	34	34		28	0	0

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)							
Onimin Laural Han	P	erson-Trip Estima	ites	External Trips by Mode*			
Origin Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²
Office	5	13	18	1	12	0	0
Retail	50	39	89		33	0	0
Restaurant	43	30	73	1	20	0	0
Cinema/Entertainment	0	0	0	1	0	0	0
Residential	21	29	50	1	24	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	80	80	1	32	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

Table 7.1a Adjusted Internal Trip Capture Rates for Trip Origins within a Multi-Use Development					
Land I	Wee	Weekday			
Land	USE Falls	AM Peak Hour	PM Peak Hour		
	To Office	0.0%	0.0%		
	To Retail	28.0%	20.0%		
F OFFICE	To Restaurant	63.0%	4.0%		
From OFFICE	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	1.0%	2.0%		
	To Hotel	0.0%	0.0%		
	To Office	29.0%	2.0%		
	To Retail	0.0%	0.0%		
Frank DETAIL	To Restaurant	13.0%	29.0%		
From RETAIL	To Cinema/Entertainment	0.0%	4.0%		
	To Residential	14.0%	26.0%		
	To Hotel	0.0%	5.0%		
	To Office	31.0%	3.0%		
	To Retail	14.0%	41.0%		
E. DECTALIDANT	To Restaurant	0.0%	0.0%		
From RESTAURANT	To Cinema/Entertainment	0.0%	8.0%		
	To Residential	4.0%	18.0%		
	To Hotel	3.0%	7.0%		
	To Office	0.0%	2.0%		
	To Retail	0.0%	21.0%		
	To Restaurant	0.0%	31.0%		
From CINEMA/ENTERTAINMENT	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	8.0%		
	To Hotel	0.0%	2.0%		
	To Office	2.0%	4.0%		
	To Retail	1.0%	42.0%		
Frame DECIDENTIAL	To Restaurant	20.0%	21.0%		
From RESIDENTIAL	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	0.0%		
	To Hotel	0.0%	3.0%		
	To Office	75.0%	0.0%		
	To Retail	14.0%	16.0%		
From HOTEL	To Restaurant	9.0%	68.0%		
From HOTEL	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	2.0%		
	To Hotel	0.0%	0.0%		

20040801 The Seventy Six for SED NCHRP 684 Internal Trip Capture Estimation Calculation Sheet - Table 7.2a_VER0

Table 7.2a Adjusted Internal Trip Capture Rates for Trip Destinations within a Multi-Use Development					
Land Us	o Doire	Wee	kday		
Land Os	se Pairs	AM Peak Hour	PM Peak Hour		
	From Office	0.0%	0.0%		
	From Retail	4.0%	31.0%		
T- 055105	From Restaurant	14.0%	30.0%		
To OFFICE	From Cinema/Entertainment	0.0%	6.0%		
	From Residential	3.0%	57.0%		
	From Hotel	3.0%	0.0%		
	From Office	32.0%	8.0%		
	From Retail	0.0%	0.0%		
To DETAIL	From Restaurant	8.0%	50.0%		
To RETAIL	From Cinema/Entertainment	0.0%	4.0%		
	From Residential	17.0%	10.0%		
	From Hotel	4.0%	2.0%		
	From Office	23.0%	2.0%		
	From Retail	50.0%	29.0%		
T DECTALIDANT	From Restaurant	0.0%	0.0%		
To RESTAURANT	From Cinema/Entertainment	0.0%	3.0%		
	From Residential	20.0%	14.0%		
	From Hotel	6.0%	5.0%		
	From Office	0.0%	1.0%		
	From Retail	0.0%	26.0%		
T. OINEMA /ENTERTAINMENT	From Restaurant	0.0%	32.0%		
To CINEMA/ENTERTAINMENT	From Cinema/Entertainment	0.0%	0.0%		
	From Residential	0.0%	0.0%		
	From Hotel	0.0%	0.0%		
	From Office	0.0%	4.0%		
	From Retail	2.0%	46.0%		
T DECIDENTIAL	From Restaurant	5.0%	16.0%		
To RESIDENTIAL	From Cinema/Entertainment	0.0%	4.0%		
	From Residential	0.0%	0.0%		
	From Hotel	0.0%	0.0%		
	From Office	0.0%	0.0%		
	From Retail	0.0%	17.0%		
Ta HOTEL	From Restaurant	4.0%	71.0%		
To HOTEL	From Cinema/Entertainment	0.0%	1.0%		
	From Residential	0.0%	12.0%		
	From Hotel	0.0%	0.0%		

THE SEVENTY-SIX, MIXED-USE REDEVELOPMENT
TRAFFIC STUDY, PARKING DEMAND STUDY, AND TRANSPORTATION DEMAND MANAGEMENT PLAN
Prepared to Support the Development Plan Approval Process
THE CITY OF ALBANY, NY | JUNE 2020 | RAE PROJECT# 20040801

APPENDIX F USDO EXCERPTS

Section 375-4(E)(2): Required Off-Street Parking

after consultation with other City officials regarding potential parking needs, or a combination of those methods.

(f) ACCESSIBLE PARKING

Within the requirements of Table 375-4-6 and 375-4-7 (not in addition to those requirements), accessible parking shall be provided for all multi-family and nonresidential uses as required by the International Building Code, the Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities, and New York state statues, as amended.

(2) REQUIRED OFF-STREET PARKING

(a) MINIMUM REQUIRED PARKING

In all zoning districts, off-street parking shall be provided in accordance with Table 375-4-6: Minimum Required Off-Street Parking), as adjusted by other provisions of this USDO.

Table 375-4-6: Minimum Required Off-Street Parking							
GFA = Gross Floor Area; NLA = Net Leasable Area; Sq. Ft. = Square Feet							
LAND USE CATEGORY	Minimum Off-Street Parking Space Required (Proposed)	Minimum Bicycle Parking Required					
RESIDENTIAL USES							
Household Living							
Dwelling, Single-Family Detached Dwelling, Two-Family Detached	1 per unit	Not Required					
Dwelling, Townhouse	0 spaces						
Dwelling, Multi-Family	1 per unit	2 spaces or 10% of required vehicle spaces, whichever is greater. Min. 60% enclosed					
Dwelling, Live-Work	1 per unit	Not Required					
Group Living							
Assisted Living Facility or Nursing Home Community Residential Facility	Structure originally designed for household living use: Household living parking requirement.	3 spaces					
Group Living, Other	Other structure: 1 per 600 sq. ft. GFA						
Dormitory	0.5 per unit	20% of required vehicle spaces; Min. 60% enclosed					
Rooming House	1 space plus 0.25 per guest bedroom	3 spaces or 10% of required vehicle spaces, whichever is greater; Min. 30% enclosed					
CIVIC and INSTITUTIONAL	USES						
Cemetery	None	Not Required					
Club	1 per 300 sq. ft. GFA	3 spaces or 10% of required vehicle					
Community Center	1 per 300 sq. ft. GFA	spaces, whichever is greater;					

Table 375-4-6: Minimum Required Off-Street Parking							
GFA = Gross Floor Area; NLA = Net Leasable Area; Sq. Ft. = Square Feet							
LAND USE CATEGORY	Minimum Off-Street Parking Space Required (Proposed)	Minimum Bicycle Parking Required					
Cultural Facility	1 per 500 sq. ft. GFA	Min. 30% enclosed					
Day Care Center	1 per 300 sq. ft. GFA	Not Required					
Higher Education Institution	1 per 400 sq. ft. GFA	20% of required vehicle spaces; Min.30% enclosed					
Hospital	1 per 3 inpatient beds at design capacity	5% of required vehicle spaces; Min. 30% enclosed					
Police or Fire Station	1 per 400 sq. ft. GFA	Not Required					
Religious Institution	1 per 300 sq. ft. GFA	10% of required vehicle spaces, whichever is greater; Min. 30% enclosed					
School	1 per 750 sq. ft. GFA	20% of required vehicle spaces					
Stadium or Arena	1 per 4 persons of maximum occupancy	10% of required vehicle spaces, whichever is greater					
Natural Area or Preserve							
Park or Playground Public Utility or Services, Major Public Utility or Services,	None	Not Required					
Minor							
Towers							
COMMERCIAL USES Agriculture & Animal-Rela	ford						
Agriculture, Urban	None	None					
Plant Nursery	1 per 1,000 sq. ft. NLA	3 spaces or 10% of required vehicle spaces, whichever is greater					
Veterinarian or Kennel	1 per 400 sq. ft. NLA	3 spaces					
Food & Beverage Services							
Bar or Tavern Restaurant	1 per 150 sq. ft. NLA (excluding outdoor dining areas)	3 spaces or 10% of required vehicle spaces, whichever is greater					
Guest Accommodations							
Bed and Breakfast		3 spaces or 10% of required vehicle					
Hotel	0.75 per guest room	spaces; Min. 60% enclosure requirement for Hotel					
Office and Services							
Funeral Home or Crematorium	1 per 100 sq. ft. of main assembly room	Not Required					
Office Personal or Business Service	ersonal or Business 1 per 400 sq. ft. NLA 10% of re						
Trade School	1 per 400 sq. ft. NLA	1					
Recreation & Entertainmen	nt						

Section 375-4: Development Standards Section 375-4(E): Parking and Loading Section 375-4(E)(2): Required Off-Street Parking

Table 375-4-6: Minimum	Required Off-Street Parking			
GFA = Gross Floor Area; NLA	a = Net Leasable Area; Sq. Ft. = Square Feet			
LAND USE CATEGORY	Minimum Off-Street Parking Space Required (Proposed)	Minimum Bicycle Parking Required		
Adult Entertainment		2 chacos or 10% of required vehicle		
Indoor Recreation or Entertainment	1 per 300 sq. ft. NLA	3 spaces or 10% of required vehicle spaces, whichever is greater		
Outdoor Recreation or Entertainment	1 per 300 sq. ft. GFA plus 1 per 10,000 sq. ft. of outdoor activity area	3 spaces or 10% of required vehicle spaces, whichever is greater		
Retail				
General Retail	4 may 400 ag # NII A			
Specialty Retail	1 per 400 sq. ft. NLA			
Adult Retail				
Controlled Substance Dispensary		3 spaces or 10% of required vehicle spaces, whichever is greater		
Convenience Retail	1 per 300 sq. ft. NLA			
Pawn Shop				
Supermarket				
Vehicles & Equipment				
Automobile Wash				
Dispatch Service or Freight Truck Terminal		Not Required		
Heavy Vehicle and Equipment Sales, Rental, and Servicing	1 per 500 sq. ft. NLA			
Light Vehicle Sales, Rental, and Servicing		Hot Hoquilou		
Parking Lot	None			
Parking Structure	None			
Transit Facility	Not Required			
Vehicle Fueling Station	1 per 200 sq. ft. NLA	3 spaces		
INDUSTRIAL USES				
Commercial Services				
Heavy Commercial Services	1 por 1 000 cg. ft. GEA	Not Paguirod		
Storage and Wholesale Distribution	1 per 1,000 sq. ft. GFA	Not Required		
Self-Storage Facility	1 per 5,500 sq. ft. GFA	3 spaces		
Manufacturing, Production	n, and Extraction			
Artisan Manufacturing	1 per 500 sq. ft. GFA	3 spaces or 10% of required vehicle spaces, whichever is greater		
Heavy Manufacturing				
Light Manufacturing Marijuana Manufacturing Facility	1 per 1,000 sq. ft. GFA	Not Required		

Section 375-4(E)(3): Parking Alternatives and Adjustments

Table 375-4-6: Minimum Required Off-Street Parking							
GFA = Gross Floor Area; NLA = Net Leasable Area; Sq. Ft. = Square Feet							
LAND USE CATEGORY Minimum Off-Street Parking Space Required (Proposed)		Minimum Bicycle Parking Required					
Waste & Salvage							
Waste/Recycling Processing Facility	1 per 1,000 sq. ft. indoor GFA						
Recycling Drop-Off Center	1 space	Not Required					
Landfill		Horrioquiloa					
Vehicle Towing, Wrecking, or Junkyard	None						
ACCESSORY USES							
Home Occupation	None	Not Required					
All Other Accessory Uses Listed in Table 375-2-1	None	Not Required					
TEMPORARY USES	TEMPORARY USES						
Farmers' Market	None	5 spaces or 10% of required vehicle spaces, whichever is greater					
All Other Temporary Uses Listed in Table 375-2-1	None	Not Required					

(b) MAXIMUM PARKING PERMITTED

Surface parking spaces shall not exceed 115 percent of the minimums required in Table 375-4-6 (Minimum Required Off-Street Parking).

(3) PARKING ALTERNATIVES AND ADJUSTMENTS

The minimum and maximum amounts of parking required by Table 375-4-6 may be adjusted as described in this Section 375-4(E)(3).

(a) PROXIMITY TO TRANSIT

The minimum number of off-street parking spaces required for new development or redevelopment shall be reduced by 20 percent if the proposed development or redevelopment is located within ¼ mile of any transit stop with a peak service frequency of 15 minutes or better. Maximum parking limits shall remain as stated in Section 375-4(E)(2)(b). No development approved with this parking reduction shall be considered nonconforming if the bus or transit line is later relocated, or if peak frequency headways are raised above 15 minutes, and the number of parking spaces provided for that use does not meet the minimum requirements of Table 375-4-6. The Planning Department shall maintain a map of areas within the City that qualify for the proximity to transit exemption described in this Section.

(b) **SHARED PARKING**

Where two or more uses listed in Table 375-3-1 (Use Table), share a parking lot or structure, the total off-street automobile parking requirement for those uses may be reduced by the factors shown in Table 375-4-7 below. To calculate the shared parking reduction, add the requirements for each use category, then divide the sum by the factor indicated in Table 375-4-7. If more than two uses share a parking lot or structure, this adjustment is made for the two uses with the largest off-street parking requirements, and any parking requirements for additional uses shall be added to that adjusted requirement without further adjustment.

Table 375-4-7: Shared Parking Reduction [Add the requirements and divide by these factors]							
Property Use	Multi- Family Dwelling	Civic and Institutional	Food & Beverage Service, Guest Accommodations, Recreation & Entertainment	Retail, and Office & Services	Other Commercial Use		
Multi-Family Dwelling	1.0	1.1	1.1	1.2	1.3		
Civic and Institutional	1.1	1.0	1.2	1.3	1.5		
Food & Beverage Service, Guest Accommodations, Recreation & Entertainment	1.1	1.2	1.0	1.3	1.7		
Retail, and Office & Services	1.2	1.3	1.3	1.0	1.2		
Other Commercial Use	1.3	1.5	1.7	1.2	1.0		

Example Calculation- Shared parking proposed between a 60,000 sq. ft. School (Civic and Institutional use) and a 12,000 sq. ft. Indoor Recreation or Entertainment facility (Recreation use) would be calculated as follows:

- 60,000 sq. ft. School: Standalone Parking Requirement: I space per 750 sq. ft. GFA = 80 spaces
- 12,000 sq. ft. Indoor Recreation or Entertainment Facility: Standalone Parking Requirement: I space per 300 sq. ft. GFA = 40 spaces
- Shared Parking Calculation: 120 spaces / 1.2 (from table) = 100 spaces

(c) ON-STREET PARKING

In any Mixed Use or Special Purpose zoning district, the minimum amount of off-street parking otherwise required by this Section 375-4(E) shall be reduced by the number of legal on-street parking spaces located along the street or streets on which the subject property fronts. Such area shall be measured between extensions of the side or rear lot lines of the subject property as extended into the public right-of-way. Credit against minimum required off-street parking shall only be given for an on-street space if at least 50 percent of the length of the on-street space, measured along the curb, is located between such side or rear lot lines as extended. Such on-street parking spaces shall not be calculated